mwitiderrick commited on
Commit
1644a79
·
1 Parent(s): 060f795

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ ### User:\n
7
+ {prompt}
8
+ ### Assistant:\n
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ # Nous Hermes 2 - Solar 10.7B - DeepSparse
14
+ This repo contains model files for [Nous Hermes 2 - Solar 10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+
18
+ ## Inference
19
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
20
+ ```bash
21
+ pip install deepsparse-nightly[llm]
22
+ ```
23
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
24
+ ```python
25
+ from deepsparse import TextGeneration
26
+
27
+ prompt = "How to make banana bread?"
28
+ formatted_prompt = f"### User:\n{prompt}\n\n### Assistant:\n"
29
+
30
+ model = TextGeneration(model_path="hf:nm-testing/Nous-Hermes-2-SOLAR-10.7B-pruned50-quant-ds")
31
+
32
+ print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
33
+ """
34
+ To make banana bread, you will need the following ingredients:
35
+
36
+ - 3 ripe bananas
37
+ - 1 cup of milk
38
+ - 1 cup of sugar
39
+ - 1/2 cup of butter
40
+ - 2 eggs
41
+ - 1 teaspoon of baking powder
42
+ - 1 teaspoon of salt
43
+ - 2 cups of flour
44
+
45
+ Here's a simple recipe to make banana bread:
46
+
47
+ 1. Preheat your oven to 350°F (175°C).
48
+
49
+ 2. In a large bowl, mash the ripe bananas.
50
+
51
+ 3. Add the milk, sugar, butter, eggs, baking powder, salt, and flour to the mashed bananas. Mix everything together until you have a smooth batter.
52
+
53
+ 4. Pour the batter into a greased loaf pan.
54
+
55
+ 5. Bake the banana bread for about 60 minutes or until a tooth
56
+ """
57
+ ```
58
+
59
+ ## Prompt template
60
+ ```
61
+
62
+ ### User:\n
63
+ {prompt}
64
+ ### Assistant:\n
65
+ ```
66
+ ## Sparsification
67
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
68
+
69
+ ```bash
70
+ git clone https://github.com/neuralmagic/sparseml
71
+ pip install -e "sparseml[transformers]"
72
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py NousResearch/Nous-Hermes-2-SOLAR-10.7B open_platypus --recipe recipe.yaml --save True
73
+ python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
74
+ cp deployment/model.onnx deployment/model-orig.onnx
75
+ ```
76
+ Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
77
+ ```python
78
+ import os
79
+ import onnx
80
+ from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
81
+ input_file = "deployment/model-orig.onnx"
82
+ output_file = "deployment/model.onnx"
83
+ model = onnx.load(input_file, load_external_data=False)
84
+ model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
85
+ onnx.save(model, output_file)
86
+ print(f"Modified model saved to: {output_file}")
87
+ ```
88
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
89
+ ## Slack
90
+
91
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)