alexmarques
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -31,8 +31,9 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
31 |
- **License(s):** Llama3.1
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
-
|
35 |
-
It
|
|
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -128,9 +129,19 @@ model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
|
|
128 |
|
129 |
## Evaluation
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
**Note:** Results have been updated after Meta modified the chat template.
|
136 |
|
@@ -148,12 +159,26 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
148 |
<td><strong>Recovery</strong>
|
149 |
</td>
|
150 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
<tr>
|
152 |
<td>MMLU (5-shot)
|
153 |
</td>
|
154 |
-
<td>87.
|
155 |
</td>
|
156 |
-
<td>87.
|
157 |
</td>
|
158 |
<td>99.8%
|
159 |
</td>
|
@@ -161,9 +186,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
161 |
<tr>
|
162 |
<td>ARC Challenge (0-shot)
|
163 |
</td>
|
164 |
-
<td>
|
165 |
</td>
|
166 |
-
<td>95.
|
167 |
</td>
|
168 |
<td>100.4%
|
169 |
</td>
|
@@ -171,9 +196,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
171 |
<tr>
|
172 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
173 |
</td>
|
174 |
-
<td>96.
|
175 |
</td>
|
176 |
-
<td>96.
|
177 |
</td>
|
178 |
<td>99.8%
|
179 |
</td>
|
@@ -181,9 +206,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
181 |
<tr>
|
182 |
<td>Hellaswag (10-shot)
|
183 |
</td>
|
184 |
-
<td>88.
|
185 |
</td>
|
186 |
-
<td>88.
|
187 |
</td>
|
188 |
<td>99.9%
|
189 |
</td>
|
@@ -191,9 +216,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
191 |
<tr>
|
192 |
<td>Winogrande (5-shot)
|
193 |
</td>
|
194 |
-
<td>87.
|
195 |
</td>
|
196 |
-
<td>87.
|
197 |
</td>
|
198 |
<td>100.2%
|
199 |
</td>
|
@@ -201,9 +226,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
201 |
<tr>
|
202 |
<td>TruthfulQA (0-shot)
|
203 |
</td>
|
204 |
-
<td>64.
|
205 |
</td>
|
206 |
-
<td>65.
|
207 |
</td>
|
208 |
<td>101.0%
|
209 |
</td>
|
@@ -211,13 +236,111 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
211 |
<tr>
|
212 |
<td><strong>Average</strong>
|
213 |
</td>
|
214 |
-
<td><strong>86.
|
215 |
</td>
|
216 |
-
<td><strong>86.
|
217 |
</td>
|
218 |
<td><strong>100.0%</strong>
|
219 |
</td>
|
220 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
</table>
|
222 |
|
223 |
### Reproduction
|
@@ -287,4 +410,39 @@ lm_eval \
|
|
287 |
--tasks truthfulqa \
|
288 |
--num_fewshot 0 \
|
289 |
--batch_size auto
|
290 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
- **License(s):** Llama3.1
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
+
This model is a quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
35 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
36 |
+
Meta-Llama-3.1-405B-Instruct-quantized.w4a16 achieves 98.7% recovery for the Arena-Hard evaluation, 100.0% for OpenLLM v1 (using Meta's prompting when available), 99.0% for OpenLLM v2, 98.0% for HumanEval pass@1, and 98.5% for HumanEval+ pass@1.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
|
|
129 |
|
130 |
## Evaluation
|
131 |
|
132 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
|
133 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
134 |
+
|
135 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
136 |
+
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
|
137 |
+
We report below the scores obtained in each judgement and the average.
|
138 |
+
|
139 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
140 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
141 |
+
|
142 |
+
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
|
143 |
+
|
144 |
+
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
|
145 |
|
146 |
**Note:** Results have been updated after Meta modified the chat template.
|
147 |
|
|
|
159 |
<td><strong>Recovery</strong>
|
160 |
</td>
|
161 |
</tr>
|
162 |
+
<tr>
|
163 |
+
<td><strong>Arena Hard</strong>
|
164 |
+
</td>
|
165 |
+
<td>67.4 (67.3 / 67.5)
|
166 |
+
</td>
|
167 |
+
<td>66.5 (66.5 / 66.4)
|
168 |
+
</td>
|
169 |
+
<td>98.7%
|
170 |
+
</td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td><strong>OpenLLM v1</strong>
|
174 |
+
</td>
|
175 |
+
</tr>
|
176 |
<tr>
|
177 |
<td>MMLU (5-shot)
|
178 |
</td>
|
179 |
+
<td>87.4
|
180 |
</td>
|
181 |
+
<td>87.2
|
182 |
</td>
|
183 |
<td>99.8%
|
184 |
</td>
|
|
|
186 |
<tr>
|
187 |
<td>ARC Challenge (0-shot)
|
188 |
</td>
|
189 |
+
<td>95.0
|
190 |
</td>
|
191 |
+
<td>95.3
|
192 |
</td>
|
193 |
<td>100.4%
|
194 |
</td>
|
|
|
196 |
<tr>
|
197 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
198 |
</td>
|
199 |
+
<td>96.4
|
200 |
</td>
|
201 |
+
<td>96.3
|
202 |
</td>
|
203 |
<td>99.8%
|
204 |
</td>
|
|
|
206 |
<tr>
|
207 |
<td>Hellaswag (10-shot)
|
208 |
</td>
|
209 |
+
<td>88.3
|
210 |
</td>
|
211 |
+
<td>88.3
|
212 |
</td>
|
213 |
<td>99.9%
|
214 |
</td>
|
|
|
216 |
<tr>
|
217 |
<td>Winogrande (5-shot)
|
218 |
</td>
|
219 |
+
<td>87.2
|
220 |
</td>
|
221 |
+
<td>87.4
|
222 |
</td>
|
223 |
<td>100.2%
|
224 |
</td>
|
|
|
226 |
<tr>
|
227 |
<td>TruthfulQA (0-shot)
|
228 |
</td>
|
229 |
+
<td>64.6
|
230 |
</td>
|
231 |
+
<td>65.3
|
232 |
</td>
|
233 |
<td>101.0%
|
234 |
</td>
|
|
|
236 |
<tr>
|
237 |
<td><strong>Average</strong>
|
238 |
</td>
|
239 |
+
<td><strong>86.8</strong>
|
240 |
</td>
|
241 |
+
<td><strong>86.8</strong>
|
242 |
</td>
|
243 |
<td><strong>100.0%</strong>
|
244 |
</td>
|
245 |
</tr>
|
246 |
+
<tr>
|
247 |
+
<td><strong>OpenLLM v2</strong>
|
248 |
+
</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td>MMLU-Pro (5-shot)
|
252 |
+
</td>
|
253 |
+
<td>59.7
|
254 |
+
</td>
|
255 |
+
<td>59.4
|
256 |
+
</td>
|
257 |
+
<td>99.3%
|
258 |
+
</td>
|
259 |
+
</tr>
|
260 |
+
<tr>
|
261 |
+
<td>IFEval (0-shot)
|
262 |
+
</td>
|
263 |
+
<td>87.7
|
264 |
+
</td>
|
265 |
+
<td>88.0
|
266 |
+
</td>
|
267 |
+
<td>100.4%
|
268 |
+
</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td>BBH (3-shot)
|
272 |
+
</td>
|
273 |
+
<td>67.0
|
274 |
+
</td>
|
275 |
+
<td>67.5
|
276 |
+
</td>
|
277 |
+
<td>100.7%
|
278 |
+
</td>
|
279 |
+
</tr>
|
280 |
+
<tr>
|
281 |
+
<td>Math-|v|-5 (4-shot)
|
282 |
+
</td>
|
283 |
+
<td>39.0
|
284 |
+
</td>
|
285 |
+
<td>37.6
|
286 |
+
</td>
|
287 |
+
<td>96.5%
|
288 |
+
</td>
|
289 |
+
</tr>
|
290 |
+
<tr>
|
291 |
+
<td>GPQA (0-shot)
|
292 |
+
</td>
|
293 |
+
<td>19.5
|
294 |
+
</td>
|
295 |
+
<td>17.5
|
296 |
+
</td>
|
297 |
+
<td>89.8%
|
298 |
+
</td>
|
299 |
+
</tr>
|
300 |
+
<tr>
|
301 |
+
<td>MuSR (0-shot)
|
302 |
+
</td>
|
303 |
+
<td>19.5
|
304 |
+
</td>
|
305 |
+
<td>19.4
|
306 |
+
</td>
|
307 |
+
<td>99.5%
|
308 |
+
</td>
|
309 |
+
</tr>
|
310 |
+
<tr>
|
311 |
+
<td><strong>Average</strong>
|
312 |
+
</td>
|
313 |
+
<td><strong>48.7</strong>
|
314 |
+
</td>
|
315 |
+
<td><strong>48.2</strong>
|
316 |
+
</td>
|
317 |
+
<td><strong>99.0%</strong>
|
318 |
+
</td>
|
319 |
+
</tr>
|
320 |
+
<tr>
|
321 |
+
<td><strong>Coding</strong>
|
322 |
+
</td>
|
323 |
+
</tr>
|
324 |
+
<tr>
|
325 |
+
<td>HumanEval pass@1
|
326 |
+
</td>
|
327 |
+
<td>86.8
|
328 |
+
</td>
|
329 |
+
<td>85.1
|
330 |
+
</td>
|
331 |
+
<td>98.0%
|
332 |
+
</td>
|
333 |
+
</tr>
|
334 |
+
<tr>
|
335 |
+
<td>HumanEval+ pass@1
|
336 |
+
</td>
|
337 |
+
<td>80.1
|
338 |
+
</td>
|
339 |
+
<td>78.9
|
340 |
+
</td>
|
341 |
+
<td>98.5%
|
342 |
+
</td>
|
343 |
+
</tr>
|
344 |
</table>
|
345 |
|
346 |
### Reproduction
|
|
|
410 |
--tasks truthfulqa \
|
411 |
--num_fewshot 0 \
|
412 |
--batch_size auto
|
413 |
+
```
|
414 |
+
|
415 |
+
#### OpenLLM v2
|
416 |
+
```
|
417 |
+
lm_eval \
|
418 |
+
--model vllm \
|
419 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8,enable_chunked_prefill=True \
|
420 |
+
--apply_chat_template \
|
421 |
+
--fewshot_as_multiturn \
|
422 |
+
--tasks leaderboard \
|
423 |
+
--batch_size auto
|
424 |
+
```
|
425 |
+
|
426 |
+
#### HumanEval and HumanEval+
|
427 |
+
##### Generation
|
428 |
+
```
|
429 |
+
python3 codegen/generate.py \
|
430 |
+
--model neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16 \
|
431 |
+
--bs 16 \
|
432 |
+
--temperature 0.2 \
|
433 |
+
--n_samples 50 \
|
434 |
+
--root "." \
|
435 |
+
--dataset humaneval \
|
436 |
+
--tp 8
|
437 |
+
```
|
438 |
+
##### Sanitization
|
439 |
+
```
|
440 |
+
python3 evalplus/sanitize.py \
|
441 |
+
humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2
|
442 |
+
```
|
443 |
+
##### Evaluation
|
444 |
+
```
|
445 |
+
evalplus.evaluate \
|
446 |
+
--dataset humaneval \
|
447 |
+
--samples humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2-sanitized
|
448 |
+
```
|