Update README.md
Browse files
README.md
CHANGED
@@ -25,7 +25,8 @@ language:
|
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
28 |
-
It achieves an average score of 77.75 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67.
|
|
|
29 |
|
30 |
### Model Optimizations
|
31 |
|
@@ -170,6 +171,7 @@ lm_eval \
|
|
170 |
--tasks openllm \
|
171 |
--batch_size auto
|
172 |
```
|
|
|
173 |
|
174 |
### Accuracy
|
175 |
|
@@ -188,71 +190,71 @@ lm_eval \
|
|
188 |
<tr>
|
189 |
<td>MMLU (5-shot)
|
190 |
</td>
|
191 |
-
<td
|
192 |
</td>
|
193 |
-
<td>
|
194 |
</td>
|
195 |
-
<td
|
196 |
</td>
|
197 |
</tr>
|
198 |
<tr>
|
199 |
<td>ARC Challenge (25-shot)
|
200 |
</td>
|
201 |
-
<td>
|
202 |
</td>
|
203 |
-
<td>
|
204 |
</td>
|
205 |
-
<td>
|
206 |
</td>
|
207 |
</tr>
|
208 |
<tr>
|
209 |
<td>GSM-8K (5-shot, strict-match)
|
210 |
</td>
|
211 |
-
<td>
|
212 |
</td>
|
213 |
-
<td>
|
214 |
</td>
|
215 |
-
<td>
|
216 |
</td>
|
217 |
</tr>
|
218 |
<tr>
|
219 |
<td>Hellaswag (10-shot)
|
220 |
</td>
|
221 |
-
<td
|
222 |
</td>
|
223 |
-
<td
|
224 |
</td>
|
225 |
-
<td
|
226 |
</td>
|
227 |
</tr>
|
228 |
<tr>
|
229 |
<td>Winogrande (5-shot)
|
230 |
</td>
|
231 |
-
<td>
|
232 |
</td>
|
233 |
-
<td>
|
234 |
</td>
|
235 |
-
<td>
|
236 |
</td>
|
237 |
</tr>
|
238 |
<tr>
|
239 |
<td>TruthfulQA (0-shot)
|
240 |
</td>
|
241 |
-
<td
|
242 |
</td>
|
243 |
-
<td>
|
244 |
</td>
|
245 |
-
<td
|
246 |
</td>
|
247 |
</tr>
|
248 |
<tr>
|
249 |
<td><strong>Average</strong>
|
250 |
</td>
|
251 |
-
<td><strong
|
252 |
</td>
|
253 |
-
<td><strong
|
254 |
</td>
|
255 |
-
<td><strong>
|
256 |
</td>
|
257 |
</tr>
|
258 |
</table>
|
|
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
28 |
+
<!-- It achieves an average score of 77.75 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->
|
29 |
+
It achieves an average recovery of 99.44% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1) compared to the unquantized model.
|
30 |
|
31 |
### Model Optimizations
|
32 |
|
|
|
171 |
--tasks openllm \
|
172 |
--batch_size auto
|
173 |
```
|
174 |
+
Certain benchmarks for the full precision model are still being acquired. Average recovery is calculated only with metrics that both models have been evaluated on.
|
175 |
|
176 |
### Accuracy
|
177 |
|
|
|
190 |
<tr>
|
191 |
<td>MMLU (5-shot)
|
192 |
</td>
|
193 |
+
<td>*
|
194 |
</td>
|
195 |
+
<td>86.06
|
196 |
</td>
|
197 |
+
<td>*
|
198 |
</td>
|
199 |
</tr>
|
200 |
<tr>
|
201 |
<td>ARC Challenge (25-shot)
|
202 |
</td>
|
203 |
+
<td>73.38
|
204 |
</td>
|
205 |
+
<td>72.87
|
206 |
</td>
|
207 |
+
<td>99.30%
|
208 |
</td>
|
209 |
</tr>
|
210 |
<tr>
|
211 |
<td>GSM-8K (5-shot, strict-match)
|
212 |
</td>
|
213 |
+
<td>95.07
|
214 |
</td>
|
215 |
+
<td>94.39
|
216 |
</td>
|
217 |
+
<td>99.28%
|
218 |
</td>
|
219 |
</tr>
|
220 |
<tr>
|
221 |
<td>Hellaswag (10-shot)
|
222 |
</td>
|
223 |
+
<td>*
|
224 |
</td>
|
225 |
+
<td>*
|
226 |
</td>
|
227 |
+
<td>*
|
228 |
</td>
|
229 |
</tr>
|
230 |
<tr>
|
231 |
<td>Winogrande (5-shot)
|
232 |
</td>
|
233 |
+
<td>87.21
|
234 |
</td>
|
235 |
+
<td>86.98
|
236 |
</td>
|
237 |
+
<td>99.74%
|
238 |
</td>
|
239 |
</tr>
|
240 |
<tr>
|
241 |
<td>TruthfulQA (0-shot)
|
242 |
</td>
|
243 |
+
<td>*
|
244 |
</td>
|
245 |
+
<td>64.9
|
246 |
</td>
|
247 |
+
<td>*
|
248 |
</td>
|
249 |
</tr>
|
250 |
<tr>
|
251 |
<td><strong>Average</strong>
|
252 |
</td>
|
253 |
+
<td><strong>*</strong>
|
254 |
</td>
|
255 |
+
<td><strong>*</strong>
|
256 |
</td>
|
257 |
+
<td><strong>99.44%</strong>
|
258 |
</td>
|
259 |
</tr>
|
260 |
</table>
|