metadata
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_skillner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.5919354839
- name: NER Recall
type: recall
value: 0.5758368201
- name: NER F Score
type: f_score
value: 0.5837751856
A Named Entity Recognition (NER) model to extract SKILL, EXPERIENCE and BENEFIT from job adverts.
Future developments or maintainence of this model by Nesta have been stopped as of May 2025.
Feature | Description |
---|---|
Name | en_skillner |
Version | 3.7.1 |
spaCy | >=3.7.4,<3.8.0 |
Default Pipeline | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , tagger , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston) ClearNLP Constituent-to-Dependency Conversion (Emory University) WordNet 3.0 (Princeton University) Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl) (Explosion) |
License | MIT |
Author | nestauk |
Label Scheme
View label scheme (3 labels for 1 components)
Component | Labels |
---|---|
ner |
SKILL , EXPERIENCE , BENEFIT |
Accuracy
Type | Score |
---|---|
ENTS_P |
59.19 |
ENTS_R |
57.58 |
ENTS_F |
58.38 |
SKILL_P |
72.19 |
SKILL_R |
72.62 |
SKILL_F |
72.40 |
EXPERIENCE_P |
52.14 |
EXPERIENCE_R |
41.48 |
EXPERIENCE_F |
46.20 |
BENEFIT_P |
75.61 |
BENEFIT_R |
46.27 |
BENEFIT_F |
57.41 |