nermine123 commited on
Commit
d73946f
·
1 Parent(s): ed8f815

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cord-layoutlmv3
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: layoutlmv3-finetuned-cord_100
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cord-layoutlmv3
21
+ type: cord-layoutlmv3
22
+ config: cord
23
+ split: test
24
+ args: cord
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9296817172464841
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9401197604790419
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9348716040193524
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9435483870967742
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # layoutlmv3-finetuned-cord_100
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2908
48
+ - Precision: 0.9297
49
+ - Recall: 0.9401
50
+ - F1: 0.9349
51
+ - Accuracy: 0.9435
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 5
72
+ - eval_batch_size: 5
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 2500
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 4.17 | 250 | 1.0995 | 0.6869 | 0.7635 | 0.7231 | 0.7789 |
83
+ | 1.4568 | 8.33 | 500 | 0.5676 | 0.8382 | 0.8765 | 0.8569 | 0.8773 |
84
+ | 1.4568 | 12.5 | 750 | 0.4044 | 0.8920 | 0.9147 | 0.9032 | 0.9202 |
85
+ | 0.3562 | 16.67 | 1000 | 0.3518 | 0.9086 | 0.9229 | 0.9157 | 0.9270 |
86
+ | 0.3562 | 20.83 | 1250 | 0.3060 | 0.9245 | 0.9349 | 0.9297 | 0.9372 |
87
+ | 0.1509 | 25.0 | 1500 | 0.3032 | 0.9261 | 0.9379 | 0.9319 | 0.9419 |
88
+ | 0.1509 | 29.17 | 1750 | 0.2980 | 0.9261 | 0.9386 | 0.9323 | 0.9368 |
89
+ | 0.0848 | 33.33 | 2000 | 0.2996 | 0.9226 | 0.9371 | 0.9298 | 0.9385 |
90
+ | 0.0848 | 37.5 | 2250 | 0.2924 | 0.9276 | 0.9394 | 0.9334 | 0.9440 |
91
+ | 0.0619 | 41.67 | 2500 | 0.2908 | 0.9297 | 0.9401 | 0.9349 | 0.9435 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.31.0
97
+ - Pytorch 2.0.1+cu118
98
+ - Datasets 2.13.1
99
+ - Tokenizers 0.13.3