nermine123
commited on
Commit
·
d73946f
1
Parent(s):
ed8f815
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- cord-layoutlmv3
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: layoutlmv3-finetuned-cord_100
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: cord-layoutlmv3
|
21 |
+
type: cord-layoutlmv3
|
22 |
+
config: cord
|
23 |
+
split: test
|
24 |
+
args: cord
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9296817172464841
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9401197604790419
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9348716040193524
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9435483870967742
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# layoutlmv3-finetuned-cord_100
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2908
|
48 |
+
- Precision: 0.9297
|
49 |
+
- Recall: 0.9401
|
50 |
+
- F1: 0.9349
|
51 |
+
- Accuracy: 0.9435
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 5
|
72 |
+
- eval_batch_size: 5
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 2500
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 4.17 | 250 | 1.0995 | 0.6869 | 0.7635 | 0.7231 | 0.7789 |
|
83 |
+
| 1.4568 | 8.33 | 500 | 0.5676 | 0.8382 | 0.8765 | 0.8569 | 0.8773 |
|
84 |
+
| 1.4568 | 12.5 | 750 | 0.4044 | 0.8920 | 0.9147 | 0.9032 | 0.9202 |
|
85 |
+
| 0.3562 | 16.67 | 1000 | 0.3518 | 0.9086 | 0.9229 | 0.9157 | 0.9270 |
|
86 |
+
| 0.3562 | 20.83 | 1250 | 0.3060 | 0.9245 | 0.9349 | 0.9297 | 0.9372 |
|
87 |
+
| 0.1509 | 25.0 | 1500 | 0.3032 | 0.9261 | 0.9379 | 0.9319 | 0.9419 |
|
88 |
+
| 0.1509 | 29.17 | 1750 | 0.2980 | 0.9261 | 0.9386 | 0.9323 | 0.9368 |
|
89 |
+
| 0.0848 | 33.33 | 2000 | 0.2996 | 0.9226 | 0.9371 | 0.9298 | 0.9385 |
|
90 |
+
| 0.0848 | 37.5 | 2250 | 0.2924 | 0.9276 | 0.9394 | 0.9334 | 0.9440 |
|
91 |
+
| 0.0619 | 41.67 | 2500 | 0.2908 | 0.9297 | 0.9401 | 0.9349 | 0.9435 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.31.0
|
97 |
+
- Pytorch 2.0.1+cu118
|
98 |
+
- Datasets 2.13.1
|
99 |
+
- Tokenizers 0.13.3
|