File size: 27,750 Bytes
d315780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import logging
from typing import Any, Dict, Optional, Set, Tuple, Union

import peft
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import transformers.activations
import transformers.modeling_outputs
import transformers.models
from transformers.models.whisper import modeling_whisper as whisper

# We must use relative import in this directory to allow uploading to HF Hub
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
from .ultravox_config import LossConfig
from .ultravox_config import LossFunction
from .ultravox_config import UltravoxConfig


class UltravoxModel(transformers.LlamaPreTrainedModel):
    """
    The Ultravox model which consists of an audio encoder and a language model.

    Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
    projected to the language model's embedding space using a few linear layers.
    The text is embedded by the language model as usual and then the audio and text embeddings are merged together.

    A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.

    Parameters:
        config: Model configuration class with all the parameters of the model.
    """

    config_class = UltravoxConfig
    config: UltravoxConfig  # for type hinting
    # Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
    _keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]

    def __init__(self, config: UltravoxConfig):
        super().__init__(config)
        self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)

        self.keep_params: Set[str] = set()
        self.vocab_size = config.vocab_size

        self.audio_tower = self._create_audio_tower(config)
        self.multi_modal_projector = self._create_multi_modal_projector(config)
        self.language_model = self._create_language_model(config)

        # Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
        # FSDP throws an error if some of the layer types are not found in the model.
        # This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
        self._no_split_modules = (self.language_model._no_split_modules or []) + (
            self.audio_tower._no_split_modules or []
        )

        self.loss_config = LossConfig()
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def set_loss_config(self, loss_config: LossConfig):
        self.loss_config = loss_config

    def _setup_cache(
        self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
    ):
        self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)

    def _reorder_cache(self, past_key_values, beam_idx):
        return self.language_model._reorder_cache(past_key_values, beam_idx)

    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
    ) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(
            new_num_tokens, pad_to_multiple_of
        )
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _compute_kl_loss(
        self,
        lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
        labels: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
        alt_input_ids: Optional[torch.Tensor] = None,
        alt_attention_mask: Optional[torch.Tensor] = None,
        alt_labels: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        # disable gradient computation for the teacher model
        with torch.no_grad():
            # compute the teacher (text-only) model's distribution
            alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
            alt_lm_output = self.language_model.forward(
                inputs_embeds=alt_inputs_embeds,
                labels=alt_labels,
                attention_mask=alt_attention_mask,
                past_key_values=past_key_values,
                **kwargs,
            )
        # compute the KL divergence loss between the two models
        kl_loss = F.kl_div(
            F.log_softmax(
                lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
                dim=-1,
            ),
            F.softmax(
                alt_lm_output.logits[alt_labels != -100]
                / self.loss_config.kl_temperature,
                dim=-1,
            ),
            reduction="batchmean",
        )
        return {"loss": kl_loss}

    def forward(
        self,
        input_ids: torch.Tensor,
        audio_values: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        audio_token_start_idx: Optional[torch.Tensor] = None,
        audio_len: Optional[torch.Tensor] = None,
        audio_token_len: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
        # the alt_* fields are needed for KL divergence loss
        alt_input_ids: Optional[torch.Tensor] = None,
        alt_attention_mask: Optional[torch.Tensor] = None,
        alt_labels: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
        """
        Forward pass for the Ultravox model.

        `input_ids` are the tokenized text input. They are embedded by the language model as usual.
        `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
        projected to the language model's embedding space using a few linear layers.
        The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
        of the audio embeddings in the merged embeddings.

        Args:
            input_ids: The tokenized text input.
            audio_values: The processed audio values.
            inputs_embeds: The embeddings for the input tokens.
            labels: The tokenized text labels.
            attention_mask: The attention mask for the input.
            position_ids: The position ids for the input.
            past_key_values: The past key value cache for the language model attention layers.
            **kwargs: Additional keyword arguments. Passed directly to the language model.
        """
        if inputs_embeds is None:
            # B x T  ->  B x T x D
            inputs_embeds = self.get_input_embeddings().forward(input_ids)

        if audio_values is not None:
            assert (
                audio_token_start_idx is not None and audio_token_len is not None
            ), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
            assert (
                len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
            ), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."

            # B x A/3200 x D
            audio_tower_output = self.audio_tower.forward(
                audio_values.to(self.audio_tower.dtype), audio_len=audio_len
            ).last_hidden_state
            audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)

            audio_embeds = self.multi_modal_projector.forward(audio_tower_output)

            # combine audio and text embeddings
            for i, (audio, start, length) in enumerate(
                zip(audio_embeds, audio_token_start_idx, audio_token_len)
            ):
                length = min(length, audio.shape[0])
                inputs_embeds[i, start : start + length] = audio[:length]

        lm_output = self.language_model.forward(
            inputs_embeds=inputs_embeds,
            labels=labels,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            **kwargs,
        )
        if self.training:
            if self.loss_config.loss_function == LossFunction.CrossEntropy:
                return lm_output
            elif self.loss_config.loss_function == LossFunction.KL_Divergence:
                return self._compute_kl_loss(
                    lm_output=lm_output,
                    labels=labels,
                    past_key_values=past_key_values,
                    alt_input_ids=alt_input_ids,
                    alt_attention_mask=alt_attention_mask,
                    alt_labels=alt_labels,
                    **kwargs,
                )
            else:
                raise ValueError(
                    f"Unsupported loss function: {self.loss_config.loss_function}"
                )
        else:
            return lm_output

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.Tensor,
        audio_values: Optional[torch.FloatTensor] = None,
        audio_token_start_idx: Optional[torch.Tensor] = None,
        audio_token_len: Optional[torch.Tensor] = None,
        audio_len: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        model_input = self.language_model.prepare_inputs_for_generation(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            **kwargs,
        )

        # include audio information in model_input only when it is needed during prefilling
        # audio_token_start_idx should always be relative to the current cache position
        prefill_start_idx = 0 if cache_position is None else cache_position[0]
        if (
            audio_values is not None
            and audio_token_start_idx is not None
            and prefill_start_idx <= torch.max(audio_token_start_idx)
        ):
            model_input["audio_values"] = audio_values
            model_input["audio_token_start_idx"] = (
                audio_token_start_idx - prefill_start_idx
            )
            model_input["audio_token_len"] = audio_token_len
            model_input["audio_len"] = audio_len

        return model_input

    @classmethod
    def _create_multi_modal_projector(
        cls, config: UltravoxConfig
    ) -> "UltravoxProjector":
        projector = UltravoxProjector(config)
        projector.to(config.torch_dtype)
        return projector

    @classmethod
    def _create_audio_tower(
        cls, config: UltravoxConfig
    ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
        if config.audio_model_id is not None:
            if "whisper" in config.audio_model_id is not None:
                audio_tower = ModifiedWhisperEncoder.from_pretrained(
                    config.audio_model_id, torch_dtype=config.torch_dtype
                )
            else:
                audio_tower = transformers.AutoModel.from_pretrained(
                    config.audio_model_id, torch_dtype=config.torch_dtype
                )
        else:
            if "whisper" in config.audio_config._name_or_path:
                audio_tower = ModifiedWhisperEncoder(config.audio_config)
            else:
                with transformers.modeling_utils.no_init_weights():
                    # we only ever use from_config if the weights are retrained, hence initializing is not
                    # required. This makes the model quite creation faster since init on CPU is quite slow.
                    audio_tower = transformers.AutoModel.from_config(
                        config.audio_config
                    )

        if isinstance(
            audio_tower,
            (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
        ):
            # For these models we only need the encoder part
            # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
            # WhisperModel -> WhisperEncoder
            audio_tower = audio_tower.encoder

        audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
        return audio_tower

    @classmethod
    def _create_language_model(
        cls, config: UltravoxConfig
    ) -> transformers.LlamaForCausalLM:
        if config.text_model_id is not None:
            language_model = transformers.AutoModelForCausalLM.from_pretrained(
                config.text_model_id,
                attn_implementation=config._attn_implementation,
                torch_dtype=config.torch_dtype,
                load_in_4bit=True,
            )
        else:
            with transformers.modeling_utils.no_init_weights():
                # we only ever use from_config if the weights are retrained, hence initializing is not
                # required. This makes the model quite creation faster since init on CPU is quite slow.
                language_model = transformers.AutoModelForCausalLM.from_config(
                    config.text_config,
                    attn_implementation=config._attn_implementation,
                    torch_dtype=config.torch_dtype,
                )

        language_model = apply_lora(language_model, config.text_model_lora_config)
        return language_model

    def merge_and_unload(self):
        if isinstance(self.language_model, peft.PeftModel):
            self.language_model = self.language_model.merge_and_unload()
            # no need to download base language model weights anymore, so we can remove the id
            self.config.text_model_id = None
            self.keep_params.update(
                set(
                    [
                        f"language_model.{name}"
                        for name, _ in self.language_model.named_parameters()
                    ]
                )
            )

        if isinstance(self.audio_tower, peft.PeftModel):
            self.audio_tower = self.audio_tower.merge_and_unload()
            # no need to download base audio model weights anymore, so we can remove the id
            self.config.audio_model_id = None
            self.keep_params.update(
                set(
                    [
                        f"audio_tower.{name}"
                        for name, _ in self.audio_tower.named_parameters()
                    ]
                )
            )

        for param in ["text_model_lora_config", "audio_model_lora_config"]:
            if hasattr(self.config, param):
                delattr(self.config, param)

    def push_to_hub(self, *args, **kwargs):
        self.merge_and_unload()
        self.to(self.language_model.dtype)
        return super().push_to_hub(*args, **kwargs)

    def save_pretrained(
        self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
    ):
        if state_dict is None:
            state_dict = super().state_dict()

        named_params = dict(self.named_parameters())

        state_dict = {
            k: v
            for k, v in state_dict.items()
            if k in self.keep_params
            or (k in named_params and named_params[k].requires_grad)
        }

        super().save_pretrained(*args, state_dict=state_dict, **kwargs)

    def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
        self.keep_params.update(set(state_dict.keys()))

    def print_trainable_parameters(self):
        """
        Prints the number of trainable parameters in the model (reuses Peft model's method)
        """
        count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters

        trainable_params, all_param = count_params(self)

        logging.info(
            f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
            f" || trainable%: {100 * trainable_params / all_param:.1f}%"
        )

        lm_trainable_params, lm_all_params = count_params(self.language_model)
        audio_trainable_params, audio_all_params = count_params(self.audio_tower)

        projector_trainable_params = (
            trainable_params - lm_trainable_params - audio_trainable_params
        )
        projector_all_params = all_param - lm_all_params - audio_all_params

        logging.info(
            f"Trainable%:   "
            f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
            f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
            f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
        )


def is_cache_empty(
    past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
) -> bool:
    """
    Check if the cache is empty.
    """
    if past_key_values is None:
        return True
    if isinstance(past_key_values, tuple):
        return all(len(c) == 0 for c in past_key_values)
    return past_key_values.get_seq_length() == 0


def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
    """
    Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
    """
    lora_config = peft.LoraConfig(**lora_config or {})

    if lora_config.r == 0:
        # freeze the model entirely
        for param in model.parameters():
            param.requires_grad = False
    else:
        model = peft.get_peft_model(model, lora_config)

    return model


class StackAudioFrames(nn.Module):
    """
    Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.

    The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
    NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
    we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
    In most cases this extra padding will get removed in the model's forward function so it has no effect.
    """

    def __init__(self, stack_factor: int = 8):
        super().__init__()
        self.stack_factor = stack_factor

    def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
        B, T, C = audio_embeds.shape
        T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
        audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
        B, T, C = audio_embeds.shape
        audio_embeds = audio_embeds.view(
            B, T // self.stack_factor, C * self.stack_factor
        )
        return audio_embeds


class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
    def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
        super().__init__(hidden_size=hidden_size, eps=eps)
        self.weight.data.fill_(init)


class SwiGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        return F.silu(gate) * x


class UltravoxProjector(nn.Sequential):
    def __init__(self, config: UltravoxConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self._pad_and_stack = StackAudioFrames(config.stack_factor)
        dim = config.audio_config.hidden_size * config.stack_factor
        self.ln_pre = RMSNorm(dim, init=config.norm_init)
        self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
        dim = self.hidden_dim
        self.act = transformers.activations.get_activation(config.projector_act)
        dim = dim // 2 if config.projector_act == "swiglu" else dim
        self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
        self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)

    def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
        audio_features = self._pad_and_stack(audio_features)
        audio_features = self.ln_pre(audio_features)
        hidden_states = self.linear_1(audio_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        hidden_states = self.ln_post(hidden_states)
        return hidden_states


class ModifiedWhisperEncoder(
    whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
):
    """
    Encoder portion of OpenAI's Whisper model.

    This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
    1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
    2. allow less than 30 second of audio padding to be passed in:
        - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
        - embed_pos is now sliced to match the length of `inputs_embeds`

    Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
    """

    base_model_prefix = "model.encoder"
    _no_split_modules = ["WhisperEncoderLayer"]

    def forward(
        self,
        input_features,
        audio_len=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        expected_seq_length = (
            self.config.max_source_positions
            * self.conv1.stride[0]
            * self.conv2.stride[0]
        )
        if input_features.shape[-1] > expected_seq_length:
            raise ValueError(
                f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
            )

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))

        inputs_embeds = inputs_embeds.permute(0, 2, 1)
        embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]

        hidden_states = inputs_embeds + embed_pos
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.dropout, training=self.training
        )

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # Create attention mask based on audio lengths to mask out padding tokens
        # For each sample in batch:
        # - Convert raw audio length to feature length after convolutions
        # - Create boolean mask that is True for valid positions and False for padding
        # - Convert to extended attention mask format expected by transformer layers
        #   (1.0 for positions to attend to, large negative for positions to ignore)
        # This masking ensures consistent behavior between training and inference
        # by preventing the model from attending to padding tokens in both cases
        attention_mask = None
        if audio_len != None:
            audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
            batch_size = hidden_states.shape[0]
            max_seq_len = hidden_states.shape[1]
            attention_mask = (
                torch.arange(max_seq_len, device=hidden_states.device)[None, :]
                .expand(batch_size, -1)
                .lt(audio_feature_len.view(batch_size, 1))
            )
            attention_mask = self.get_extended_attention_mask(
                attention_mask,
                None,
                device=hidden_states.device,
                dtype=hidden_states.dtype,
            )

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                        output_attentions,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(
                            head_mask[idx] if head_mask is not None else None
                        ),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, encoder_states, all_attentions]
                if v is not None
            )
        return transformers.modeling_outputs.BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


UltravoxConfig.register_for_auto_class()
UltravoxModel.register_for_auto_class()

transformers.AutoConfig.register("ultravox", UltravoxConfig)
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)

transformers.activations.ACT2FN["swiglu"] = SwiGLU