nenad1002 commited on
Commit
bf0fece
1 Parent(s): f79f8ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -76,10 +76,11 @@ Various training procedures were explored alongside multiple models, however, al
76
 
77
  Over time, several base models and fine-tuning approaches were tested. The best accuracy was achieved with [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) and qLoRA, but the training duration was extensive, and optimizing hyperparameters proved to be highly challenging.
78
 
79
- Other base models were also tested: [Mistral 7B v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), [Meta-Llama/Llama-2-7b-chat-hf](Meta-Llama/Llama-2-7b-chat-hf), and the base model of this experiment.
 
80
 
81
  Since Bayesian methods for parameter search are prone to getting stuck in local maxima, I performed a grid search with several optimization techniques such as [LoRA](https://arxiv.org/abs/2106.09685), [DoRA](https://arxiv.org/abs/2402.09353), [LoRA+](https://arxiv.org/abs/2402.12354), [(LO)ReFT](https://arxiv.org/abs/2404.03592), and [qLoRA](https://arxiv.org/abs/2305.14314).
82
- With LoRA, LoRA+, and DoRA, I found that a rank of 8 (with the paper-recommended double alpha of 16) achieved the best performance, particularly since my dataset was on the smaller side, which otherwise would have led to overfitting. Various LoRA dropout rates were tested between 10% and 20%, but in all fine-tuning approaches, the model began to jump over better local minima. Hence, I sticked to 10%.
83
  After applying the [linear scaling rule](https://arxiv.org/pdf/1706.02677), I settled on a batch size of 8 and found that a starting learning rate of 10^-4 yielded the best results. There was no significant difference between using cosine or linear decay for the learning rate when employing the AdamW optimizer.
84
 
85
  Regarding the nodes, training on only attention nodes performed very poorly on both training and evaluation data. The results improved slightly with the addition of MLP projections, but none of the models or fine-tuning approaches achieved an evaluation cross-entropy below 0.5. However, when including the embedding layer—despite the significant increase in the number of training parameters—the model began to generalize well. I assume this is due to the introduction of new terminology, requiring the model to adjust its embeddings slightly to catch the new semantics. I did not modify the LM head, as no significant performance improvements were observed.
 
76
 
77
  Over time, several base models and fine-tuning approaches were tested. The best accuracy was achieved with [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) and qLoRA, but the training duration was extensive, and optimizing hyperparameters proved to be highly challenging.
78
 
79
+ Other base models were also tested: [Mistral 7B v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), [Meta-Llama/Llama-2-7b-chat-hf](
80
+ Over time, several base models and fine-tuning approaches were tested. The best accuracy was achieved with [Llama 3.1 70B Instruct](https://huggingface.co/Meta-Llama/Llama-2-7b-chat-hf), and the base model of this experiment.
81
 
82
  Since Bayesian methods for parameter search are prone to getting stuck in local maxima, I performed a grid search with several optimization techniques such as [LoRA](https://arxiv.org/abs/2106.09685), [DoRA](https://arxiv.org/abs/2402.09353), [LoRA+](https://arxiv.org/abs/2402.12354), [(LO)ReFT](https://arxiv.org/abs/2404.03592), and [qLoRA](https://arxiv.org/abs/2305.14314).
83
+ With LoRA, LoRA+, and DoRA, I found that a rank of 8 (with the paper-recommended double alpha of 16) achieved the best performance, particularly since my dataset was on the smaller side, which otherwise would have led to overfitting. Various LoRA dropout rates were tested between 10% and 20%, but increasing the rate started to lead to underfitting. Hence, I sticked to 10%.
84
  After applying the [linear scaling rule](https://arxiv.org/pdf/1706.02677), I settled on a batch size of 8 and found that a starting learning rate of 10^-4 yielded the best results. There was no significant difference between using cosine or linear decay for the learning rate when employing the AdamW optimizer.
85
 
86
  Regarding the nodes, training on only attention nodes performed very poorly on both training and evaluation data. The results improved slightly with the addition of MLP projections, but none of the models or fine-tuning approaches achieved an evaluation cross-entropy below 0.5. However, when including the embedding layer—despite the significant increase in the number of training parameters—the model began to generalize well. I assume this is due to the introduction of new terminology, requiring the model to adjust its embeddings slightly to catch the new semantics. I did not modify the LM head, as no significant performance improvements were observed.