Model save
Browse files- README.md +110 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: apple/mobilevitv2-1.0-imagenet1k-256
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- webdataset
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: webdataset
|
21 |
+
type: webdataset
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.9283185840707965
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.8171557562076749
|
32 |
+
- name: Precision
|
33 |
+
type: precision
|
34 |
+
value: 0.8341013824884793
|
35 |
+
- name: Recall
|
36 |
+
type: recall
|
37 |
+
value: 0.8008849557522124
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on the webdataset dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1955
|
48 |
+
- Accuracy: 0.9283
|
49 |
+
- F1: 0.8172
|
50 |
+
- Precision: 0.8341
|
51 |
+
- Recall: 0.8009
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 0.0002
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_ratio: 0.1
|
77 |
+
- num_epochs: 30
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
83 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
84 |
+
| 0.6687 | 1.5625 | 100 | 0.6623 | 0.7230 | 0.5335 | 0.4022 | 0.7920 |
|
85 |
+
| 0.4454 | 3.125 | 200 | 0.4152 | 0.8832 | 0.7490 | 0.6567 | 0.8717 |
|
86 |
+
| 0.2835 | 4.6875 | 300 | 0.2661 | 0.9097 | 0.7661 | 0.7952 | 0.7389 |
|
87 |
+
| 0.2197 | 6.25 | 400 | 0.2151 | 0.9195 | 0.7869 | 0.8358 | 0.7434 |
|
88 |
+
| 0.1613 | 7.8125 | 500 | 0.2007 | 0.9292 | 0.8140 | 0.8578 | 0.7743 |
|
89 |
+
| 0.1655 | 9.375 | 600 | 0.1935 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
|
90 |
+
| 0.1815 | 10.9375 | 700 | 0.1883 | 0.9265 | 0.8074 | 0.8488 | 0.7699 |
|
91 |
+
| 0.1316 | 12.5 | 800 | 0.1825 | 0.9327 | 0.8273 | 0.8505 | 0.8053 |
|
92 |
+
| 0.1612 | 14.0625 | 900 | 0.1837 | 0.9257 | 0.8100 | 0.8287 | 0.7920 |
|
93 |
+
| 0.118 | 15.625 | 1000 | 0.1896 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
|
94 |
+
| 0.1178 | 17.1875 | 1100 | 0.1937 | 0.9239 | 0.8028 | 0.8333 | 0.7743 |
|
95 |
+
| 0.1248 | 18.75 | 1200 | 0.1913 | 0.9301 | 0.8192 | 0.8483 | 0.7920 |
|
96 |
+
| 0.1169 | 20.3125 | 1300 | 0.1916 | 0.9301 | 0.8167 | 0.8585 | 0.7788 |
|
97 |
+
| 0.1094 | 21.875 | 1400 | 0.1925 | 0.9292 | 0.8182 | 0.8411 | 0.7965 |
|
98 |
+
| 0.1108 | 23.4375 | 1500 | 0.1961 | 0.9345 | 0.8333 | 0.8486 | 0.8186 |
|
99 |
+
| 0.1089 | 25.0 | 1600 | 0.1993 | 0.9283 | 0.8172 | 0.8341 | 0.8009 |
|
100 |
+
| 0.0919 | 26.5625 | 1700 | 0.1936 | 0.9319 | 0.8262 | 0.8433 | 0.8097 |
|
101 |
+
| 0.0969 | 28.125 | 1800 | 0.1978 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
|
102 |
+
| 0.1093 | 29.6875 | 1900 | 0.1955 | 0.9283 | 0.8172 | 0.8341 | 0.8009 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.42.4
|
108 |
+
- Pytorch 2.3.1+cu121
|
109 |
+
- Datasets 2.20.0
|
110 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 17675500
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c4f9d9f42e1a00e0bfdba1bc9e3f9c74ea07e57d58c6dac341ebaffe7716668
|
3 |
size 17675500
|