Model save
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
-
value: 0.
|
30 |
- name: F1
|
31 |
type: f1
|
32 |
-
value: 0.
|
33 |
- name: Precision
|
34 |
type: precision
|
35 |
-
value: 0.
|
36 |
- name: Recall
|
37 |
type: recall
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Accuracy: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Precision: 0.
|
52 |
-
- Recall: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -68,7 +68,7 @@ More information needed
|
|
68 |
### Training hyperparameters
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
-
- learning_rate:
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 8
|
74 |
- seed: 42
|
@@ -82,30 +82,30 @@ The following hyperparameters were used during training:
|
|
82 |
|
83 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
|
110 |
|
111 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
+
value: 0.9401234567901234
|
30 |
- name: F1
|
31 |
type: f1
|
32 |
+
value: 0.847723704866562
|
33 |
- name: Precision
|
34 |
type: precision
|
35 |
+
value: 0.864
|
36 |
- name: Recall
|
37 |
type: recall
|
38 |
+
value: 0.8320493066255779
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1817
|
49 |
+
- Accuracy: 0.9401
|
50 |
+
- F1: 0.8477
|
51 |
+
- Precision: 0.864
|
52 |
+
- Recall: 0.8320
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
68 |
### Training hyperparameters
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 8
|
74 |
- seed: 42
|
|
|
82 |
|
83 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
+
| 0.3381 | 1.2346 | 100 | 0.3271 | 0.8660 | 0.5669 | 0.8045 | 0.4376 |
|
86 |
+
| 0.2067 | 2.4691 | 200 | 0.2080 | 0.9194 | 0.7827 | 0.8514 | 0.7242 |
|
87 |
+
| 0.1745 | 3.7037 | 300 | 0.1864 | 0.9228 | 0.8003 | 0.8308 | 0.7720 |
|
88 |
+
| 0.1724 | 4.9383 | 400 | 0.1792 | 0.9299 | 0.8188 | 0.8493 | 0.7904 |
|
89 |
+
| 0.128 | 6.1728 | 500 | 0.1736 | 0.9327 | 0.8292 | 0.8437 | 0.8151 |
|
90 |
+
| 0.1034 | 7.4074 | 600 | 0.1672 | 0.9355 | 0.8348 | 0.8571 | 0.8136 |
|
91 |
+
| 0.0944 | 8.6420 | 700 | 0.1579 | 0.9392 | 0.8452 | 0.8622 | 0.8290 |
|
92 |
+
| 0.0919 | 9.8765 | 800 | 0.1631 | 0.9364 | 0.8347 | 0.8710 | 0.8012 |
|
93 |
+
| 0.0791 | 11.1111 | 900 | 0.1592 | 0.9380 | 0.8383 | 0.8771 | 0.8028 |
|
94 |
+
| 0.0684 | 12.3457 | 1000 | 0.1577 | 0.9389 | 0.8436 | 0.8655 | 0.8228 |
|
95 |
+
| 0.0737 | 13.5802 | 1100 | 0.1678 | 0.9380 | 0.8416 | 0.8613 | 0.8228 |
|
96 |
+
| 0.0625 | 14.8148 | 1200 | 0.1646 | 0.9426 | 0.8542 | 0.8692 | 0.8398 |
|
97 |
+
| 0.0591 | 16.0494 | 1300 | 0.1625 | 0.9432 | 0.8549 | 0.8756 | 0.8351 |
|
98 |
+
| 0.0464 | 17.2840 | 1400 | 0.1722 | 0.9386 | 0.8422 | 0.8676 | 0.8182 |
|
99 |
+
| 0.048 | 18.5185 | 1500 | 0.1694 | 0.9401 | 0.8472 | 0.8663 | 0.8290 |
|
100 |
+
| 0.0353 | 19.7531 | 1600 | 0.1715 | 0.9392 | 0.8462 | 0.8576 | 0.8351 |
|
101 |
+
| 0.0434 | 20.9877 | 1700 | 0.1817 | 0.9370 | 0.8386 | 0.8618 | 0.8166 |
|
102 |
+
| 0.0332 | 22.2222 | 1800 | 0.1797 | 0.9383 | 0.8423 | 0.8627 | 0.8228 |
|
103 |
+
| 0.0283 | 23.4568 | 1900 | 0.1810 | 0.9401 | 0.8482 | 0.8617 | 0.8351 |
|
104 |
+
| 0.0474 | 24.6914 | 2000 | 0.1765 | 0.9398 | 0.8454 | 0.8709 | 0.8213 |
|
105 |
+
| 0.0365 | 25.9259 | 2100 | 0.1835 | 0.9414 | 0.8516 | 0.8637 | 0.8398 |
|
106 |
+
| 0.0244 | 27.1605 | 2200 | 0.1822 | 0.9404 | 0.8479 | 0.8677 | 0.8290 |
|
107 |
+
| 0.0242 | 28.3951 | 2300 | 0.1808 | 0.9407 | 0.8483 | 0.8703 | 0.8274 |
|
108 |
+
| 0.0296 | 29.6296 | 2400 | 0.1817 | 0.9401 | 0.8477 | 0.864 | 0.8320 |
|
109 |
|
110 |
|
111 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343248584
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3cf080cd5f5a587fa7aba51e6c1a12142700cb23936c4f30e96da42fc0c9d77
|
3 |
size 343248584
|
runs/Nov14_23-23-05_ba4b501b14a9/events.out.tfevents.1731626593.ba4b501b14a9.833.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c1b1d2b40083564590021129df3755c26e6987145fe3e26a73d8c125e85547
|
3 |
+
size 68512
|