neeldevenshah commited on
Commit
64f3ee8
·
verified ·
1 Parent(s): 1cc650f

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1725528160.127c6a122c23 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a464cc5a64cff7c18cea400e888d3d513c3b53add4bdd6e92c6453aa8fecaf4
3
+ size 2343
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.01 +/- 4.95
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 8.82 +/- 4.53
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/checkpoint_000000980_4014080.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:777fd6fe6dbb7a22137209fcc6278d58c46615fbb6a67735ff2f3d9aff1223b1
3
+ size 34929669
checkpoint_p0/checkpoint_000000981_4018176.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff674e218a767ea35fa36f2da2416975c0e2cf5cc6d4234ddcf8e9024cc33f4d
3
+ size 34929669
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 2000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eebb3c9aa2933def16ae77a57c61d99637293404657219d0cab103665411d960
3
- size 17360340
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d5564e1e0ab2416fc2c7e391e458095d91777008bcfd9aa5c402c3041f3c663
3
+ size 16920056
sf_log.txt CHANGED
@@ -1128,3 +1128,657 @@ main_loop: 1104.8237
1128
  [2024-09-05 09:18:59,172][00556] Avg episode rewards: #0: 19.908, true rewards: #0: 9.008
1129
  [2024-09-05 09:18:59,173][00556] Avg episode reward: 19.908, avg true_objective: 9.008
1130
  [2024-09-05 09:19:58,814][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
  [2024-09-05 09:18:59,172][00556] Avg episode rewards: #0: 19.908, true rewards: #0: 9.008
1129
  [2024-09-05 09:18:59,173][00556] Avg episode reward: 19.908, avg true_objective: 9.008
1130
  [2024-09-05 09:19:58,814][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1131
+ [2024-09-05 09:20:05,980][00556] The model has been pushed to https://huggingface.co/neeldevenshah/rl_course_vizdoom_health_gathering_supreme
1132
+ [2024-09-05 09:22:40,327][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1133
+ [2024-09-05 09:22:40,329][00556] Overriding arg 'train_for_env_steps' with value 2000000 passed from command line
1134
+ [2024-09-05 09:22:40,340][00556] Experiment dir /content/train_dir/default_experiment already exists!
1135
+ [2024-09-05 09:22:40,342][00556] Resuming existing experiment from /content/train_dir/default_experiment...
1136
+ [2024-09-05 09:22:40,346][00556] Weights and Biases integration disabled
1137
+ [2024-09-05 09:22:40,352][00556] Environment var CUDA_VISIBLE_DEVICES is 0
1138
+
1139
+ [2024-09-05 09:22:42,659][00556] Starting experiment with the following configuration:
1140
+ help=False
1141
+ algo=APPO
1142
+ env=doom_health_gathering_supreme
1143
+ experiment=default_experiment
1144
+ train_dir=/content/train_dir
1145
+ restart_behavior=resume
1146
+ device=gpu
1147
+ seed=None
1148
+ num_policies=1
1149
+ async_rl=True
1150
+ serial_mode=False
1151
+ batched_sampling=False
1152
+ num_batches_to_accumulate=2
1153
+ worker_num_splits=2
1154
+ policy_workers_per_policy=1
1155
+ max_policy_lag=1000
1156
+ num_workers=8
1157
+ num_envs_per_worker=4
1158
+ batch_size=1024
1159
+ num_batches_per_epoch=1
1160
+ num_epochs=1
1161
+ rollout=32
1162
+ recurrence=32
1163
+ shuffle_minibatches=False
1164
+ gamma=0.99
1165
+ reward_scale=1.0
1166
+ reward_clip=1000.0
1167
+ value_bootstrap=False
1168
+ normalize_returns=True
1169
+ exploration_loss_coeff=0.001
1170
+ value_loss_coeff=0.5
1171
+ kl_loss_coeff=0.0
1172
+ exploration_loss=symmetric_kl
1173
+ gae_lambda=0.95
1174
+ ppo_clip_ratio=0.1
1175
+ ppo_clip_value=0.2
1176
+ with_vtrace=False
1177
+ vtrace_rho=1.0
1178
+ vtrace_c=1.0
1179
+ optimizer=adam
1180
+ adam_eps=1e-06
1181
+ adam_beta1=0.9
1182
+ adam_beta2=0.999
1183
+ max_grad_norm=4.0
1184
+ learning_rate=0.0001
1185
+ lr_schedule=constant
1186
+ lr_schedule_kl_threshold=0.008
1187
+ lr_adaptive_min=1e-06
1188
+ lr_adaptive_max=0.01
1189
+ obs_subtract_mean=0.0
1190
+ obs_scale=255.0
1191
+ normalize_input=True
1192
+ normalize_input_keys=None
1193
+ decorrelate_experience_max_seconds=0
1194
+ decorrelate_envs_on_one_worker=True
1195
+ actor_worker_gpus=[]
1196
+ set_workers_cpu_affinity=True
1197
+ force_envs_single_thread=False
1198
+ default_niceness=0
1199
+ log_to_file=True
1200
+ experiment_summaries_interval=10
1201
+ flush_summaries_interval=30
1202
+ stats_avg=100
1203
+ summaries_use_frameskip=True
1204
+ heartbeat_interval=20
1205
+ heartbeat_reporting_interval=600
1206
+ train_for_env_steps=2000000
1207
+ train_for_seconds=10000000000
1208
+ save_every_sec=120
1209
+ keep_checkpoints=2
1210
+ load_checkpoint_kind=latest
1211
+ save_milestones_sec=-1
1212
+ save_best_every_sec=5
1213
+ save_best_metric=reward
1214
+ save_best_after=100000
1215
+ benchmark=False
1216
+ encoder_mlp_layers=[512, 512]
1217
+ encoder_conv_architecture=convnet_simple
1218
+ encoder_conv_mlp_layers=[512]
1219
+ use_rnn=True
1220
+ rnn_size=512
1221
+ rnn_type=gru
1222
+ rnn_num_layers=1
1223
+ decoder_mlp_layers=[]
1224
+ nonlinearity=elu
1225
+ policy_initialization=orthogonal
1226
+ policy_init_gain=1.0
1227
+ actor_critic_share_weights=True
1228
+ adaptive_stddev=True
1229
+ continuous_tanh_scale=0.0
1230
+ initial_stddev=1.0
1231
+ use_env_info_cache=False
1232
+ env_gpu_actions=False
1233
+ env_gpu_observations=True
1234
+ env_frameskip=4
1235
+ env_framestack=1
1236
+ pixel_format=CHW
1237
+ use_record_episode_statistics=False
1238
+ with_wandb=False
1239
+ wandb_user=None
1240
+ wandb_project=sample_factory
1241
+ wandb_group=None
1242
+ wandb_job_type=SF
1243
+ wandb_tags=[]
1244
+ with_pbt=False
1245
+ pbt_mix_policies_in_one_env=True
1246
+ pbt_period_env_steps=5000000
1247
+ pbt_start_mutation=20000000
1248
+ pbt_replace_fraction=0.3
1249
+ pbt_mutation_rate=0.15
1250
+ pbt_replace_reward_gap=0.1
1251
+ pbt_replace_reward_gap_absolute=1e-06
1252
+ pbt_optimize_gamma=False
1253
+ pbt_target_objective=true_objective
1254
+ pbt_perturb_min=1.1
1255
+ pbt_perturb_max=1.5
1256
+ num_agents=-1
1257
+ num_humans=0
1258
+ num_bots=-1
1259
+ start_bot_difficulty=None
1260
+ timelimit=None
1261
+ res_w=128
1262
+ res_h=72
1263
+ wide_aspect_ratio=False
1264
+ eval_env_frameskip=1
1265
+ fps=35
1266
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1267
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1268
+ git_hash=unknown
1269
+ git_repo_name=not a git repository
1270
+ [2024-09-05 09:22:42,661][00556] Saving configuration to /content/train_dir/default_experiment/config.json...
1271
+ [2024-09-05 09:22:42,665][00556] Rollout worker 0 uses device cpu
1272
+ [2024-09-05 09:22:42,668][00556] Rollout worker 1 uses device cpu
1273
+ [2024-09-05 09:22:42,670][00556] Rollout worker 2 uses device cpu
1274
+ [2024-09-05 09:22:42,672][00556] Rollout worker 3 uses device cpu
1275
+ [2024-09-05 09:22:42,673][00556] Rollout worker 4 uses device cpu
1276
+ [2024-09-05 09:22:42,674][00556] Rollout worker 5 uses device cpu
1277
+ [2024-09-05 09:22:42,675][00556] Rollout worker 6 uses device cpu
1278
+ [2024-09-05 09:22:42,676][00556] Rollout worker 7 uses device cpu
1279
+ [2024-09-05 09:22:42,751][00556] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1280
+ [2024-09-05 09:22:42,752][00556] InferenceWorker_p0-w0: min num requests: 2
1281
+ [2024-09-05 09:22:42,918][00556] Starting all processes...
1282
+ [2024-09-05 09:22:42,921][00556] Starting process learner_proc0
1283
+ [2024-09-05 09:22:42,968][00556] Starting all processes...
1284
+ [2024-09-05 09:22:42,973][00556] Starting process inference_proc0-0
1285
+ [2024-09-05 09:22:42,974][00556] Starting process rollout_proc0
1286
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc1
1287
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc2
1288
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc3
1289
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc4
1290
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc5
1291
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc6
1292
+ [2024-09-05 09:22:42,976][00556] Starting process rollout_proc7
1293
+ [2024-09-05 09:22:59,230][13525] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1294
+ [2024-09-05 09:22:59,231][13525] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1295
+ [2024-09-05 09:22:59,317][13525] Num visible devices: 1
1296
+ [2024-09-05 09:22:59,345][13525] Starting seed is not provided
1297
+ [2024-09-05 09:22:59,346][13525] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1298
+ [2024-09-05 09:22:59,347][13525] Initializing actor-critic model on device cuda:0
1299
+ [2024-09-05 09:22:59,348][13525] RunningMeanStd input shape: (3, 72, 128)
1300
+ [2024-09-05 09:22:59,349][13525] RunningMeanStd input shape: (1,)
1301
+ [2024-09-05 09:22:59,419][13525] ConvEncoder: input_channels=3
1302
+ [2024-09-05 09:22:59,581][13541] Worker 1 uses CPU cores [1]
1303
+ [2024-09-05 09:22:59,601][13540] Worker 2 uses CPU cores [0]
1304
+ [2024-09-05 09:22:59,607][13545] Worker 5 uses CPU cores [1]
1305
+ [2024-09-05 09:22:59,667][13539] Worker 0 uses CPU cores [0]
1306
+ [2024-09-05 09:22:59,687][13543] Worker 4 uses CPU cores [0]
1307
+ [2024-09-05 09:22:59,699][13542] Worker 3 uses CPU cores [1]
1308
+ [2024-09-05 09:22:59,707][13546] Worker 6 uses CPU cores [0]
1309
+ [2024-09-05 09:22:59,734][13538] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1310
+ [2024-09-05 09:22:59,735][13538] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
1311
+ [2024-09-05 09:22:59,778][13538] Num visible devices: 1
1312
+ [2024-09-05 09:22:59,807][13544] Worker 7 uses CPU cores [1]
1313
+ [2024-09-05 09:22:59,844][13525] Conv encoder output size: 512
1314
+ [2024-09-05 09:22:59,844][13525] Policy head output size: 512
1315
+ [2024-09-05 09:22:59,861][13525] Created Actor Critic model with architecture:
1316
+ [2024-09-05 09:22:59,861][13525] ActorCriticSharedWeights(
1317
+ (obs_normalizer): ObservationNormalizer(
1318
+ (running_mean_std): RunningMeanStdDictInPlace(
1319
+ (running_mean_std): ModuleDict(
1320
+ (obs): RunningMeanStdInPlace()
1321
+ )
1322
+ )
1323
+ )
1324
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1325
+ (encoder): VizdoomEncoder(
1326
+ (basic_encoder): ConvEncoder(
1327
+ (enc): RecursiveScriptModule(
1328
+ original_name=ConvEncoderImpl
1329
+ (conv_head): RecursiveScriptModule(
1330
+ original_name=Sequential
1331
+ (0): RecursiveScriptModule(original_name=Conv2d)
1332
+ (1): RecursiveScriptModule(original_name=ELU)
1333
+ (2): RecursiveScriptModule(original_name=Conv2d)
1334
+ (3): RecursiveScriptModule(original_name=ELU)
1335
+ (4): RecursiveScriptModule(original_name=Conv2d)
1336
+ (5): RecursiveScriptModule(original_name=ELU)
1337
+ )
1338
+ (mlp_layers): RecursiveScriptModule(
1339
+ original_name=Sequential
1340
+ (0): RecursiveScriptModule(original_name=Linear)
1341
+ (1): RecursiveScriptModule(original_name=ELU)
1342
+ )
1343
+ )
1344
+ )
1345
+ )
1346
+ (core): ModelCoreRNN(
1347
+ (core): GRU(512, 512)
1348
+ )
1349
+ (decoder): MlpDecoder(
1350
+ (mlp): Identity()
1351
+ )
1352
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1353
+ (action_parameterization): ActionParameterizationDefault(
1354
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1355
+ )
1356
+ )
1357
+ [2024-09-05 09:22:59,992][13525] Using optimizer <class 'torch.optim.adam.Adam'>
1358
+ [2024-09-05 09:23:00,592][13525] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1359
+ [2024-09-05 09:23:00,628][13525] Loading model from checkpoint
1360
+ [2024-09-05 09:23:00,630][13525] Loaded experiment state at self.train_step=978, self.env_steps=4005888
1361
+ [2024-09-05 09:23:00,630][13525] Initialized policy 0 weights for model version 978
1362
+ [2024-09-05 09:23:00,634][13525] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1363
+ [2024-09-05 09:23:00,643][13525] LearnerWorker_p0 finished initialization!
1364
+ [2024-09-05 09:23:00,772][13538] RunningMeanStd input shape: (3, 72, 128)
1365
+ [2024-09-05 09:23:00,774][13538] RunningMeanStd input shape: (1,)
1366
+ [2024-09-05 09:23:00,797][13538] ConvEncoder: input_channels=3
1367
+ [2024-09-05 09:23:00,902][13538] Conv encoder output size: 512
1368
+ [2024-09-05 09:23:00,903][13538] Policy head output size: 512
1369
+ [2024-09-05 09:23:00,956][00556] Inference worker 0-0 is ready!
1370
+ [2024-09-05 09:23:00,958][00556] All inference workers are ready! Signal rollout workers to start!
1371
+ [2024-09-05 09:23:01,269][13540] Doom resolution: 160x120, resize resolution: (128, 72)
1372
+ [2024-09-05 09:23:01,280][13544] Doom resolution: 160x120, resize resolution: (128, 72)
1373
+ [2024-09-05 09:23:01,285][13546] Doom resolution: 160x120, resize resolution: (128, 72)
1374
+ [2024-09-05 09:23:01,287][13545] Doom resolution: 160x120, resize resolution: (128, 72)
1375
+ [2024-09-05 09:23:01,287][13539] Doom resolution: 160x120, resize resolution: (128, 72)
1376
+ [2024-09-05 09:23:01,290][13541] Doom resolution: 160x120, resize resolution: (128, 72)
1377
+ [2024-09-05 09:23:01,292][13543] Doom resolution: 160x120, resize resolution: (128, 72)
1378
+ [2024-09-05 09:23:01,413][13542] Doom resolution: 160x120, resize resolution: (128, 72)
1379
+ [2024-09-05 09:23:02,350][13544] Decorrelating experience for 0 frames...
1380
+ [2024-09-05 09:23:02,349][13541] Decorrelating experience for 0 frames...
1381
+ [2024-09-05 09:23:02,742][00556] Heartbeat connected on Batcher_0
1382
+ [2024-09-05 09:23:02,747][00556] Heartbeat connected on LearnerWorker_p0
1383
+ [2024-09-05 09:23:02,778][00556] Heartbeat connected on InferenceWorker_p0-w0
1384
+ [2024-09-05 09:23:03,046][13540] Decorrelating experience for 0 frames...
1385
+ [2024-09-05 09:23:03,058][13546] Decorrelating experience for 0 frames...
1386
+ [2024-09-05 09:23:03,064][13539] Decorrelating experience for 0 frames...
1387
+ [2024-09-05 09:23:03,072][13543] Decorrelating experience for 0 frames...
1388
+ [2024-09-05 09:23:03,115][13541] Decorrelating experience for 32 frames...
1389
+ [2024-09-05 09:23:03,296][13542] Decorrelating experience for 0 frames...
1390
+ [2024-09-05 09:23:04,066][13544] Decorrelating experience for 32 frames...
1391
+ [2024-09-05 09:23:04,144][13545] Decorrelating experience for 0 frames...
1392
+ [2024-09-05 09:23:04,523][13546] Decorrelating experience for 32 frames...
1393
+ [2024-09-05 09:23:04,526][13539] Decorrelating experience for 32 frames...
1394
+ [2024-09-05 09:23:04,634][13540] Decorrelating experience for 32 frames...
1395
+ [2024-09-05 09:23:05,099][13543] Decorrelating experience for 32 frames...
1396
+ [2024-09-05 09:23:05,356][00556] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1397
+ [2024-09-05 09:23:05,493][13542] Decorrelating experience for 32 frames...
1398
+ [2024-09-05 09:23:05,676][13545] Decorrelating experience for 32 frames...
1399
+ [2024-09-05 09:23:06,764][13541] Decorrelating experience for 64 frames...
1400
+ [2024-09-05 09:23:07,325][13546] Decorrelating experience for 64 frames...
1401
+ [2024-09-05 09:23:07,343][13544] Decorrelating experience for 64 frames...
1402
+ [2024-09-05 09:23:07,467][13540] Decorrelating experience for 64 frames...
1403
+ [2024-09-05 09:23:07,888][13543] Decorrelating experience for 64 frames...
1404
+ [2024-09-05 09:23:08,078][13539] Decorrelating experience for 64 frames...
1405
+ [2024-09-05 09:23:08,111][13542] Decorrelating experience for 64 frames...
1406
+ [2024-09-05 09:23:08,779][13545] Decorrelating experience for 64 frames...
1407
+ [2024-09-05 09:23:09,261][13546] Decorrelating experience for 96 frames...
1408
+ [2024-09-05 09:23:09,361][13540] Decorrelating experience for 96 frames...
1409
+ [2024-09-05 09:23:09,562][00556] Heartbeat connected on RolloutWorker_w6
1410
+ [2024-09-05 09:23:09,818][00556] Heartbeat connected on RolloutWorker_w2
1411
+ [2024-09-05 09:23:10,166][13539] Decorrelating experience for 96 frames...
1412
+ [2024-09-05 09:23:10,355][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1413
+ [2024-09-05 09:23:10,607][00556] Heartbeat connected on RolloutWorker_w0
1414
+ [2024-09-05 09:23:10,671][13541] Decorrelating experience for 96 frames...
1415
+ [2024-09-05 09:23:11,046][13542] Decorrelating experience for 96 frames...
1416
+ [2024-09-05 09:23:11,122][00556] Heartbeat connected on RolloutWorker_w1
1417
+ [2024-09-05 09:23:11,396][00556] Heartbeat connected on RolloutWorker_w3
1418
+ [2024-09-05 09:23:11,696][13544] Decorrelating experience for 96 frames...
1419
+ [2024-09-05 09:23:11,833][13543] Decorrelating experience for 96 frames...
1420
+ [2024-09-05 09:23:12,278][00556] Heartbeat connected on RolloutWorker_w7
1421
+ [2024-09-05 09:23:12,492][00556] Heartbeat connected on RolloutWorker_w4
1422
+ [2024-09-05 09:23:13,407][13545] Decorrelating experience for 96 frames...
1423
+ [2024-09-05 09:23:14,057][00556] Heartbeat connected on RolloutWorker_w5
1424
+ [2024-09-05 09:23:15,353][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 119.0. Samples: 1190. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1425
+ [2024-09-05 09:23:15,355][00556] Avg episode reward: [(0, '4.190')]
1426
+ [2024-09-05 09:23:16,207][13525] Signal inference workers to stop experience collection...
1427
+ [2024-09-05 09:23:16,227][13538] InferenceWorker_p0-w0: stopping experience collection
1428
+ [2024-09-05 09:23:17,702][13525] Signal inference workers to resume experience collection...
1429
+ [2024-09-05 09:23:17,726][00556] Component Batcher_0 stopped!
1430
+ [2024-09-05 09:23:17,733][13525] Stopping Batcher_0...
1431
+ [2024-09-05 09:23:17,734][13525] Loop batcher_evt_loop terminating...
1432
+ [2024-09-05 09:23:17,771][13538] Weights refcount: 2 0
1433
+ [2024-09-05 09:23:17,775][00556] Component InferenceWorker_p0-w0 stopped!
1434
+ [2024-09-05 09:23:17,780][13538] Stopping InferenceWorker_p0-w0...
1435
+ [2024-09-05 09:23:17,781][13538] Loop inference_proc0-0_evt_loop terminating...
1436
+ [2024-09-05 09:23:18,026][00556] Component RolloutWorker_w3 stopped!
1437
+ [2024-09-05 09:23:18,032][13542] Stopping RolloutWorker_w3...
1438
+ [2024-09-05 09:23:18,034][13542] Loop rollout_proc3_evt_loop terminating...
1439
+ [2024-09-05 09:23:18,051][00556] Component RolloutWorker_w1 stopped!
1440
+ [2024-09-05 09:23:18,055][13541] Stopping RolloutWorker_w1...
1441
+ [2024-09-05 09:23:18,057][13541] Loop rollout_proc1_evt_loop terminating...
1442
+ [2024-09-05 09:23:18,066][00556] Component RolloutWorker_w7 stopped!
1443
+ [2024-09-05 09:23:18,070][13544] Stopping RolloutWorker_w7...
1444
+ [2024-09-05 09:23:18,075][13544] Loop rollout_proc7_evt_loop terminating...
1445
+ [2024-09-05 09:23:18,090][00556] Component RolloutWorker_w5 stopped!
1446
+ [2024-09-05 09:23:18,095][13545] Stopping RolloutWorker_w5...
1447
+ [2024-09-05 09:23:18,096][13545] Loop rollout_proc5_evt_loop terminating...
1448
+ [2024-09-05 09:23:18,163][13539] Stopping RolloutWorker_w0...
1449
+ [2024-09-05 09:23:18,163][13539] Loop rollout_proc0_evt_loop terminating...
1450
+ [2024-09-05 09:23:18,166][13543] Stopping RolloutWorker_w4...
1451
+ [2024-09-05 09:23:18,170][13543] Loop rollout_proc4_evt_loop terminating...
1452
+ [2024-09-05 09:23:18,163][00556] Component RolloutWorker_w0 stopped!
1453
+ [2024-09-05 09:23:18,171][00556] Component RolloutWorker_w4 stopped!
1454
+ [2024-09-05 09:23:18,205][13546] Stopping RolloutWorker_w6...
1455
+ [2024-09-05 09:23:18,206][13546] Loop rollout_proc6_evt_loop terminating...
1456
+ [2024-09-05 09:23:18,205][00556] Component RolloutWorker_w6 stopped!
1457
+ [2024-09-05 09:23:18,211][13540] Stopping RolloutWorker_w2...
1458
+ [2024-09-05 09:23:18,211][13540] Loop rollout_proc2_evt_loop terminating...
1459
+ [2024-09-05 09:23:18,211][00556] Component RolloutWorker_w2 stopped!
1460
+ [2024-09-05 09:23:18,583][13525] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
1461
+ [2024-09-05 09:23:18,725][13525] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000950_3891200.pth
1462
+ [2024-09-05 09:23:18,813][13525] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000981_4018176.pth...
1463
+ [2024-09-05 09:23:18,994][13525] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
1464
+ [2024-09-05 09:23:19,030][13525] Stopping LearnerWorker_p0...
1465
+ [2024-09-05 09:23:19,031][13525] Loop learner_proc0_evt_loop terminating...
1466
+ [2024-09-05 09:23:19,032][00556] Component LearnerWorker_p0 stopped!
1467
+ [2024-09-05 09:23:19,035][00556] Waiting for process learner_proc0 to stop...
1468
+ [2024-09-05 09:23:20,461][00556] Waiting for process inference_proc0-0 to join...
1469
+ [2024-09-05 09:23:20,464][00556] Waiting for process rollout_proc0 to join...
1470
+ [2024-09-05 09:23:22,069][00556] Waiting for process rollout_proc1 to join...
1471
+ [2024-09-05 09:23:22,076][00556] Waiting for process rollout_proc2 to join...
1472
+ [2024-09-05 09:23:22,077][00556] Waiting for process rollout_proc3 to join...
1473
+ [2024-09-05 09:23:22,079][00556] Waiting for process rollout_proc4 to join...
1474
+ [2024-09-05 09:23:22,082][00556] Waiting for process rollout_proc5 to join...
1475
+ [2024-09-05 09:23:22,084][00556] Waiting for process rollout_proc6 to join...
1476
+ [2024-09-05 09:23:22,085][00556] Waiting for process rollout_proc7 to join...
1477
+ [2024-09-05 09:23:22,087][00556] Batcher 0 profile tree view:
1478
+ batching: 0.8961, releasing_batches: 0.0236
1479
+ [2024-09-05 09:23:22,088][00556] InferenceWorker_p0-w0 profile tree view:
1480
+ update_model: 0.0191
1481
+ wait_policy: 0.0053
1482
+ wait_policy_total: 10.7084
1483
+ one_step: 0.0030
1484
+ handle_policy_step: 4.1885
1485
+ deserialize: 0.0672, stack: 0.0200, obs_to_device_normalize: 0.7834, forward: 2.7947, send_messages: 0.1187
1486
+ prepare_outputs: 0.2949
1487
+ to_cpu: 0.1654
1488
+ [2024-09-05 09:23:22,090][00556] Learner 0 profile tree view:
1489
+ misc: 0.0000, prepare_batch: 2.5375
1490
+ train: 2.8481
1491
+ epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0005, kl_divergence: 0.0105, after_optimizer: 0.0580
1492
+ calculate_losses: 1.4088
1493
+ losses_init: 0.0000, forward_head: 0.4098, bptt_initial: 0.8584, tail: 0.0752, advantages_returns: 0.0011, losses: 0.0453
1494
+ bptt: 0.0081
1495
+ bptt_forward_core: 0.0079
1496
+ update: 1.3689
1497
+ clip: 0.0561
1498
+ [2024-09-05 09:23:22,091][00556] RolloutWorker_w0 profile tree view:
1499
+ wait_for_trajectories: 0.0009, enqueue_policy_requests: 0.5479, env_step: 3.3452, overhead: 0.0306, complete_rollouts: 0.0128
1500
+ save_policy_outputs: 0.0620
1501
+ split_output_tensors: 0.0194
1502
+ [2024-09-05 09:23:22,093][00556] RolloutWorker_w7 profile tree view:
1503
+ wait_for_trajectories: 0.0011, enqueue_policy_requests: 0.4878, env_step: 2.5696, overhead: 0.0508, complete_rollouts: 0.0444
1504
+ save_policy_outputs: 0.0733
1505
+ split_output_tensors: 0.0311
1506
+ [2024-09-05 09:23:22,095][00556] Loop Runner_EvtLoop terminating...
1507
+ [2024-09-05 09:23:22,097][00556] Runner profile tree view:
1508
+ main_loop: 39.1793
1509
+ [2024-09-05 09:23:22,099][00556] Collected {0: 4018176}, FPS: 313.6
1510
+ [2024-09-05 09:23:22,118][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1511
+ [2024-09-05 09:23:22,129][00556] Overriding arg 'num_workers' with value 1 passed from command line
1512
+ [2024-09-05 09:23:22,131][00556] Adding new argument 'no_render'=True that is not in the saved config file!
1513
+ [2024-09-05 09:23:22,132][00556] Adding new argument 'save_video'=True that is not in the saved config file!
1514
+ [2024-09-05 09:23:22,133][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1515
+ [2024-09-05 09:23:22,136][00556] Adding new argument 'video_name'=None that is not in the saved config file!
1516
+ [2024-09-05 09:23:22,137][00556] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
1517
+ [2024-09-05 09:23:22,139][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1518
+ [2024-09-05 09:23:22,140][00556] Adding new argument 'push_to_hub'=False that is not in the saved config file!
1519
+ [2024-09-05 09:23:22,141][00556] Adding new argument 'hf_repository'=None that is not in the saved config file!
1520
+ [2024-09-05 09:23:22,143][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
1521
+ [2024-09-05 09:23:22,144][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1522
+ [2024-09-05 09:23:22,145][00556] Adding new argument 'train_script'=None that is not in the saved config file!
1523
+ [2024-09-05 09:23:22,146][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1524
+ [2024-09-05 09:23:22,147][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
1525
+ [2024-09-05 09:23:22,179][00556] RunningMeanStd input shape: (3, 72, 128)
1526
+ [2024-09-05 09:23:22,180][00556] RunningMeanStd input shape: (1,)
1527
+ [2024-09-05 09:23:22,193][00556] ConvEncoder: input_channels=3
1528
+ [2024-09-05 09:23:22,231][00556] Conv encoder output size: 512
1529
+ [2024-09-05 09:23:22,232][00556] Policy head output size: 512
1530
+ [2024-09-05 09:23:22,255][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000981_4018176.pth...
1531
+ [2024-09-05 09:23:22,914][00556] Num frames 100...
1532
+ [2024-09-05 09:23:23,082][00556] Num frames 200...
1533
+ [2024-09-05 09:23:23,252][00556] Num frames 300...
1534
+ [2024-09-05 09:23:23,421][00556] Num frames 400...
1535
+ [2024-09-05 09:23:23,589][00556] Num frames 500...
1536
+ [2024-09-05 09:23:23,771][00556] Num frames 600...
1537
+ [2024-09-05 09:23:24,002][00556] Avg episode rewards: #0: 14.880, true rewards: #0: 6.880
1538
+ [2024-09-05 09:23:24,004][00556] Avg episode reward: 14.880, avg true_objective: 6.880
1539
+ [2024-09-05 09:23:24,031][00556] Num frames 700...
1540
+ [2024-09-05 09:23:24,204][00556] Num frames 800...
1541
+ [2024-09-05 09:23:24,381][00556] Num frames 900...
1542
+ [2024-09-05 09:23:24,575][00556] Num frames 1000...
1543
+ [2024-09-05 09:23:24,759][00556] Num frames 1100...
1544
+ [2024-09-05 09:23:24,941][00556] Num frames 1200...
1545
+ [2024-09-05 09:23:25,104][00556] Num frames 1300...
1546
+ [2024-09-05 09:23:25,228][00556] Num frames 1400...
1547
+ [2024-09-05 09:23:25,355][00556] Num frames 1500...
1548
+ [2024-09-05 09:23:25,475][00556] Num frames 1600...
1549
+ [2024-09-05 09:23:25,600][00556] Num frames 1700...
1550
+ [2024-09-05 09:23:25,732][00556] Num frames 1800...
1551
+ [2024-09-05 09:23:25,864][00556] Num frames 1900...
1552
+ [2024-09-05 09:23:25,995][00556] Num frames 2000...
1553
+ [2024-09-05 09:23:26,118][00556] Num frames 2100...
1554
+ [2024-09-05 09:23:26,245][00556] Num frames 2200...
1555
+ [2024-09-05 09:23:26,379][00556] Num frames 2300...
1556
+ [2024-09-05 09:23:26,507][00556] Num frames 2400...
1557
+ [2024-09-05 09:23:26,632][00556] Num frames 2500...
1558
+ [2024-09-05 09:23:26,763][00556] Num frames 2600...
1559
+ [2024-09-05 09:23:26,898][00556] Num frames 2700...
1560
+ [2024-09-05 09:23:27,069][00556] Avg episode rewards: #0: 35.440, true rewards: #0: 13.940
1561
+ [2024-09-05 09:23:27,070][00556] Avg episode reward: 35.440, avg true_objective: 13.940
1562
+ [2024-09-05 09:23:27,088][00556] Num frames 2800...
1563
+ [2024-09-05 09:23:27,210][00556] Num frames 2900...
1564
+ [2024-09-05 09:23:27,337][00556] Num frames 3000...
1565
+ [2024-09-05 09:23:27,460][00556] Num frames 3100...
1566
+ [2024-09-05 09:23:27,589][00556] Num frames 3200...
1567
+ [2024-09-05 09:23:27,726][00556] Num frames 3300...
1568
+ [2024-09-05 09:23:27,849][00556] Num frames 3400...
1569
+ [2024-09-05 09:23:27,983][00556] Num frames 3500...
1570
+ [2024-09-05 09:23:28,106][00556] Avg episode rewards: #0: 29.853, true rewards: #0: 11.853
1571
+ [2024-09-05 09:23:28,108][00556] Avg episode reward: 29.853, avg true_objective: 11.853
1572
+ [2024-09-05 09:23:28,163][00556] Num frames 3600...
1573
+ [2024-09-05 09:23:28,290][00556] Num frames 3700...
1574
+ [2024-09-05 09:23:28,415][00556] Num frames 3800...
1575
+ [2024-09-05 09:23:28,540][00556] Num frames 3900...
1576
+ [2024-09-05 09:23:28,668][00556] Num frames 4000...
1577
+ [2024-09-05 09:23:28,792][00556] Num frames 4100...
1578
+ [2024-09-05 09:23:28,916][00556] Num frames 4200...
1579
+ [2024-09-05 09:23:29,048][00556] Num frames 4300...
1580
+ [2024-09-05 09:23:29,173][00556] Num frames 4400...
1581
+ [2024-09-05 09:23:29,324][00556] Num frames 4500...
1582
+ [2024-09-05 09:23:29,452][00556] Num frames 4600...
1583
+ [2024-09-05 09:23:29,580][00556] Num frames 4700...
1584
+ [2024-09-05 09:23:29,712][00556] Num frames 4800...
1585
+ [2024-09-05 09:23:29,837][00556] Num frames 4900...
1586
+ [2024-09-05 09:23:29,889][00556] Avg episode rewards: #0: 29.750, true rewards: #0: 12.250
1587
+ [2024-09-05 09:23:29,891][00556] Avg episode reward: 29.750, avg true_objective: 12.250
1588
+ [2024-09-05 09:23:30,024][00556] Num frames 5000...
1589
+ [2024-09-05 09:23:30,149][00556] Num frames 5100...
1590
+ [2024-09-05 09:23:30,272][00556] Num frames 5200...
1591
+ [2024-09-05 09:23:30,400][00556] Num frames 5300...
1592
+ [2024-09-05 09:23:30,524][00556] Num frames 5400...
1593
+ [2024-09-05 09:23:30,654][00556] Num frames 5500...
1594
+ [2024-09-05 09:23:30,783][00556] Num frames 5600...
1595
+ [2024-09-05 09:23:30,844][00556] Avg episode rewards: #0: 27.008, true rewards: #0: 11.208
1596
+ [2024-09-05 09:23:30,845][00556] Avg episode reward: 27.008, avg true_objective: 11.208
1597
+ [2024-09-05 09:23:30,968][00556] Num frames 5700...
1598
+ [2024-09-05 09:23:31,101][00556] Num frames 5800...
1599
+ [2024-09-05 09:23:31,228][00556] Num frames 5900...
1600
+ [2024-09-05 09:23:31,353][00556] Num frames 6000...
1601
+ [2024-09-05 09:23:31,480][00556] Num frames 6100...
1602
+ [2024-09-05 09:23:31,603][00556] Num frames 6200...
1603
+ [2024-09-05 09:23:31,738][00556] Num frames 6300...
1604
+ [2024-09-05 09:23:31,863][00556] Num frames 6400...
1605
+ [2024-09-05 09:23:31,938][00556] Avg episode rewards: #0: 25.858, true rewards: #0: 10.692
1606
+ [2024-09-05 09:23:31,939][00556] Avg episode reward: 25.858, avg true_objective: 10.692
1607
+ [2024-09-05 09:23:32,054][00556] Num frames 6500...
1608
+ [2024-09-05 09:23:32,185][00556] Num frames 6600...
1609
+ [2024-09-05 09:23:32,312][00556] Num frames 6700...
1610
+ [2024-09-05 09:23:32,435][00556] Num frames 6800...
1611
+ [2024-09-05 09:23:32,560][00556] Num frames 6900...
1612
+ [2024-09-05 09:23:32,690][00556] Num frames 7000...
1613
+ [2024-09-05 09:23:32,812][00556] Num frames 7100...
1614
+ [2024-09-05 09:23:32,969][00556] Avg episode rewards: #0: 24.261, true rewards: #0: 10.261
1615
+ [2024-09-05 09:23:32,971][00556] Avg episode reward: 24.261, avg true_objective: 10.261
1616
+ [2024-09-05 09:23:32,995][00556] Num frames 7200...
1617
+ [2024-09-05 09:23:33,128][00556] Num frames 7300...
1618
+ [2024-09-05 09:23:33,249][00556] Num frames 7400...
1619
+ [2024-09-05 09:23:33,376][00556] Num frames 7500...
1620
+ [2024-09-05 09:23:33,500][00556] Num frames 7600...
1621
+ [2024-09-05 09:23:33,622][00556] Num frames 7700...
1622
+ [2024-09-05 09:23:33,755][00556] Num frames 7800...
1623
+ [2024-09-05 09:23:33,877][00556] Num frames 7900...
1624
+ [2024-09-05 09:23:33,999][00556] Num frames 8000...
1625
+ [2024-09-05 09:23:34,132][00556] Num frames 8100...
1626
+ [2024-09-05 09:23:34,257][00556] Num frames 8200...
1627
+ [2024-09-05 09:23:34,382][00556] Num frames 8300...
1628
+ [2024-09-05 09:23:34,509][00556] Num frames 8400...
1629
+ [2024-09-05 09:23:34,648][00556] Avg episode rewards: #0: 24.704, true rewards: #0: 10.579
1630
+ [2024-09-05 09:23:34,650][00556] Avg episode reward: 24.704, avg true_objective: 10.579
1631
+ [2024-09-05 09:23:34,704][00556] Num frames 8500...
1632
+ [2024-09-05 09:23:34,828][00556] Num frames 8600...
1633
+ [2024-09-05 09:23:34,951][00556] Num frames 8700...
1634
+ [2024-09-05 09:23:35,083][00556] Num frames 8800...
1635
+ [2024-09-05 09:23:35,262][00556] Num frames 8900...
1636
+ [2024-09-05 09:23:35,440][00556] Num frames 9000...
1637
+ [2024-09-05 09:23:35,608][00556] Num frames 9100...
1638
+ [2024-09-05 09:23:35,786][00556] Num frames 9200...
1639
+ [2024-09-05 09:23:35,959][00556] Num frames 9300...
1640
+ [2024-09-05 09:23:36,131][00556] Num frames 9400...
1641
+ [2024-09-05 09:23:36,318][00556] Num frames 9500...
1642
+ [2024-09-05 09:23:36,493][00556] Num frames 9600...
1643
+ [2024-09-05 09:23:36,675][00556] Num frames 9700...
1644
+ [2024-09-05 09:23:36,804][00556] Avg episode rewards: #0: 25.270, true rewards: #0: 10.826
1645
+ [2024-09-05 09:23:36,807][00556] Avg episode reward: 25.270, avg true_objective: 10.826
1646
+ [2024-09-05 09:23:36,910][00556] Num frames 9800...
1647
+ [2024-09-05 09:23:37,091][00556] Num frames 9900...
1648
+ [2024-09-05 09:23:37,273][00556] Num frames 10000...
1649
+ [2024-09-05 09:23:37,455][00556] Num frames 10100...
1650
+ [2024-09-05 09:23:37,633][00556] Num frames 10200...
1651
+ [2024-09-05 09:23:37,777][00556] Num frames 10300...
1652
+ [2024-09-05 09:23:37,856][00556] Avg episode rewards: #0: 23.719, true rewards: #0: 10.319
1653
+ [2024-09-05 09:23:37,858][00556] Avg episode reward: 23.719, avg true_objective: 10.319
1654
+ [2024-09-05 09:24:46,467][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1655
+ [2024-09-05 09:24:46,948][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1656
+ [2024-09-05 09:24:46,950][00556] Overriding arg 'num_workers' with value 1 passed from command line
1657
+ [2024-09-05 09:24:46,952][00556] Adding new argument 'no_render'=True that is not in the saved config file!
1658
+ [2024-09-05 09:24:46,954][00556] Adding new argument 'save_video'=True that is not in the saved config file!
1659
+ [2024-09-05 09:24:46,956][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1660
+ [2024-09-05 09:24:46,958][00556] Adding new argument 'video_name'=None that is not in the saved config file!
1661
+ [2024-09-05 09:24:46,960][00556] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1662
+ [2024-09-05 09:24:46,961][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1663
+ [2024-09-05 09:24:46,962][00556] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1664
+ [2024-09-05 09:24:46,964][00556] Adding new argument 'hf_repository'='neeldevenshah/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1665
+ [2024-09-05 09:24:46,965][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
1666
+ [2024-09-05 09:24:46,966][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1667
+ [2024-09-05 09:24:46,967][00556] Adding new argument 'train_script'=None that is not in the saved config file!
1668
+ [2024-09-05 09:24:46,968][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1669
+ [2024-09-05 09:24:46,969][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
1670
+ [2024-09-05 09:24:47,009][00556] RunningMeanStd input shape: (3, 72, 128)
1671
+ [2024-09-05 09:24:47,012][00556] RunningMeanStd input shape: (1,)
1672
+ [2024-09-05 09:24:47,032][00556] ConvEncoder: input_channels=3
1673
+ [2024-09-05 09:24:47,101][00556] Conv encoder output size: 512
1674
+ [2024-09-05 09:24:47,103][00556] Policy head output size: 512
1675
+ [2024-09-05 09:24:47,130][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000981_4018176.pth...
1676
+ [2024-09-05 09:24:47,796][00556] Num frames 100...
1677
+ [2024-09-05 09:24:47,962][00556] Num frames 200...
1678
+ [2024-09-05 09:24:48,132][00556] Num frames 300...
1679
+ [2024-09-05 09:24:48,299][00556] Num frames 400...
1680
+ [2024-09-05 09:24:48,468][00556] Num frames 500...
1681
+ [2024-09-05 09:24:48,630][00556] Num frames 600...
1682
+ [2024-09-05 09:24:48,798][00556] Num frames 700...
1683
+ [2024-09-05 09:24:48,956][00556] Num frames 800...
1684
+ [2024-09-05 09:24:49,119][00556] Num frames 900...
1685
+ [2024-09-05 09:24:49,294][00556] Num frames 1000...
1686
+ [2024-09-05 09:24:49,465][00556] Num frames 1100...
1687
+ [2024-09-05 09:24:49,630][00556] Num frames 1200...
1688
+ [2024-09-05 09:24:49,798][00556] Num frames 1300...
1689
+ [2024-09-05 09:24:49,970][00556] Num frames 1400...
1690
+ [2024-09-05 09:24:50,147][00556] Num frames 1500...
1691
+ [2024-09-05 09:24:50,321][00556] Num frames 1600...
1692
+ [2024-09-05 09:24:50,516][00556] Num frames 1700...
1693
+ [2024-09-05 09:24:50,697][00556] Num frames 1800...
1694
+ [2024-09-05 09:24:50,811][00556] Avg episode rewards: #0: 42.329, true rewards: #0: 18.330
1695
+ [2024-09-05 09:24:50,814][00556] Avg episode reward: 42.329, avg true_objective: 18.330
1696
+ [2024-09-05 09:24:50,935][00556] Num frames 1900...
1697
+ [2024-09-05 09:24:51,117][00556] Num frames 2000...
1698
+ [2024-09-05 09:24:51,343][00556] Num frames 2100...
1699
+ [2024-09-05 09:24:51,564][00556] Num frames 2200...
1700
+ [2024-09-05 09:24:51,746][00556] Num frames 2300...
1701
+ [2024-09-05 09:24:51,930][00556] Num frames 2400...
1702
+ [2024-09-05 09:24:52,128][00556] Num frames 2500...
1703
+ [2024-09-05 09:24:52,359][00556] Num frames 2600...
1704
+ [2024-09-05 09:24:52,562][00556] Num frames 2700...
1705
+ [2024-09-05 09:24:52,746][00556] Num frames 2800...
1706
+ [2024-09-05 09:24:52,931][00556] Num frames 2900...
1707
+ [2024-09-05 09:24:53,107][00556] Num frames 3000...
1708
+ [2024-09-05 09:24:53,275][00556] Num frames 3100...
1709
+ [2024-09-05 09:24:53,457][00556] Num frames 3200...
1710
+ [2024-09-05 09:24:53,630][00556] Num frames 3300...
1711
+ [2024-09-05 09:24:53,798][00556] Num frames 3400...
1712
+ [2024-09-05 09:24:53,953][00556] Avg episode rewards: #0: 40.874, true rewards: #0: 17.375
1713
+ [2024-09-05 09:24:53,955][00556] Avg episode reward: 40.874, avg true_objective: 17.375
1714
+ [2024-09-05 09:24:53,989][00556] Num frames 3500...
1715
+ [2024-09-05 09:24:54,109][00556] Num frames 3600...
1716
+ [2024-09-05 09:24:54,234][00556] Num frames 3700...
1717
+ [2024-09-05 09:24:54,358][00556] Num frames 3800...
1718
+ [2024-09-05 09:24:54,491][00556] Num frames 3900...
1719
+ [2024-09-05 09:24:54,616][00556] Num frames 4000...
1720
+ [2024-09-05 09:24:54,748][00556] Num frames 4100...
1721
+ [2024-09-05 09:24:54,861][00556] Avg episode rewards: #0: 31.823, true rewards: #0: 13.823
1722
+ [2024-09-05 09:24:54,862][00556] Avg episode reward: 31.823, avg true_objective: 13.823
1723
+ [2024-09-05 09:24:54,964][00556] Num frames 4200...
1724
+ [2024-09-05 09:24:55,144][00556] Num frames 4300...
1725
+ [2024-09-05 09:24:55,309][00556] Num frames 4400...
1726
+ [2024-09-05 09:24:55,484][00556] Num frames 4500...
1727
+ [2024-09-05 09:24:55,671][00556] Num frames 4600...
1728
+ [2024-09-05 09:24:55,846][00556] Num frames 4700...
1729
+ [2024-09-05 09:24:56,011][00556] Num frames 4800...
1730
+ [2024-09-05 09:24:56,182][00556] Num frames 4900...
1731
+ [2024-09-05 09:24:56,267][00556] Avg episode rewards: #0: 27.287, true rewards: #0: 12.287
1732
+ [2024-09-05 09:24:56,269][00556] Avg episode reward: 27.287, avg true_objective: 12.287
1733
+ [2024-09-05 09:24:56,427][00556] Num frames 5000...
1734
+ [2024-09-05 09:24:56,605][00556] Num frames 5100...
1735
+ [2024-09-05 09:24:56,802][00556] Num frames 5200...
1736
+ [2024-09-05 09:24:56,984][00556] Num frames 5300...
1737
+ [2024-09-05 09:24:57,165][00556] Num frames 5400...
1738
+ [2024-09-05 09:24:57,342][00556] Num frames 5500...
1739
+ [2024-09-05 09:24:57,519][00556] Num frames 5600...
1740
+ [2024-09-05 09:24:57,599][00556] Avg episode rewards: #0: 24.438, true rewards: #0: 11.238
1741
+ [2024-09-05 09:24:57,601][00556] Avg episode reward: 24.438, avg true_objective: 11.238
1742
+ [2024-09-05 09:24:57,712][00556] Num frames 5700...
1743
+ [2024-09-05 09:24:57,836][00556] Num frames 5800...
1744
+ [2024-09-05 09:24:57,962][00556] Num frames 5900...
1745
+ [2024-09-05 09:24:58,088][00556] Num frames 6000...
1746
+ [2024-09-05 09:24:58,213][00556] Num frames 6100...
1747
+ [2024-09-05 09:24:58,358][00556] Avg episode rewards: #0: 22.288, true rewards: #0: 10.288
1748
+ [2024-09-05 09:24:58,360][00556] Avg episode reward: 22.288, avg true_objective: 10.288
1749
+ [2024-09-05 09:24:58,397][00556] Num frames 6200...
1750
+ [2024-09-05 09:24:58,525][00556] Num frames 6300...
1751
+ [2024-09-05 09:24:58,664][00556] Num frames 6400...
1752
+ [2024-09-05 09:24:58,791][00556] Num frames 6500...
1753
+ [2024-09-05 09:24:58,892][00556] Avg episode rewards: #0: 19.908, true rewards: #0: 9.337
1754
+ [2024-09-05 09:24:58,893][00556] Avg episode reward: 19.908, avg true_objective: 9.337
1755
+ [2024-09-05 09:24:58,975][00556] Num frames 6600...
1756
+ [2024-09-05 09:24:59,097][00556] Num frames 6700...
1757
+ [2024-09-05 09:24:59,219][00556] Num frames 6800...
1758
+ [2024-09-05 09:24:59,344][00556] Num frames 6900...
1759
+ [2024-09-05 09:24:59,471][00556] Num frames 7000...
1760
+ [2024-09-05 09:24:59,599][00556] Num frames 7100...
1761
+ [2024-09-05 09:24:59,675][00556] Avg episode rewards: #0: 18.640, true rewards: #0: 8.890
1762
+ [2024-09-05 09:24:59,677][00556] Avg episode reward: 18.640, avg true_objective: 8.890
1763
+ [2024-09-05 09:24:59,792][00556] Num frames 7200...
1764
+ [2024-09-05 09:24:59,914][00556] Num frames 7300...
1765
+ [2024-09-05 09:25:00,042][00556] Num frames 7400...
1766
+ [2024-09-05 09:25:00,176][00556] Num frames 7500...
1767
+ [2024-09-05 09:25:00,300][00556] Num frames 7600...
1768
+ [2024-09-05 09:25:00,424][00556] Num frames 7700...
1769
+ [2024-09-05 09:25:00,549][00556] Num frames 7800...
1770
+ [2024-09-05 09:25:00,686][00556] Num frames 7900...
1771
+ [2024-09-05 09:25:00,810][00556] Num frames 8000...
1772
+ [2024-09-05 09:25:00,890][00556] Avg episode rewards: #0: 18.467, true rewards: #0: 8.911
1773
+ [2024-09-05 09:25:00,891][00556] Avg episode reward: 18.467, avg true_objective: 8.911
1774
+ [2024-09-05 09:25:00,994][00556] Num frames 8100...
1775
+ [2024-09-05 09:25:01,118][00556] Num frames 8200...
1776
+ [2024-09-05 09:25:01,266][00556] Num frames 8300...
1777
+ [2024-09-05 09:25:01,391][00556] Num frames 8400...
1778
+ [2024-09-05 09:25:01,516][00556] Num frames 8500...
1779
+ [2024-09-05 09:25:01,641][00556] Num frames 8600...
1780
+ [2024-09-05 09:25:01,782][00556] Num frames 8700...
1781
+ [2024-09-05 09:25:01,919][00556] Num frames 8800...
1782
+ [2024-09-05 09:25:02,001][00556] Avg episode rewards: #0: 18.120, true rewards: #0: 8.820
1783
+ [2024-09-05 09:25:02,002][00556] Avg episode reward: 18.120, avg true_objective: 8.820
1784
+ [2024-09-05 09:25:58,542][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!