File size: 7,914 Bytes
34faf87 c672664 8220e1f 34faf87 5231fd5 491cfdc 1b6814a 491cfdc 34faf87 12787d0 f7d7dbd 34faf87 671254b 34faf87 3362f78 34faf87 3362f78 34faf87 671254b 34faf87 671254b 34faf87 f818e52 34faf87 3362f78 671254b a42f499 671254b a42f499 34faf87 b90aafb a1d5e87 6aed49a a1d5e87 b90aafb a1d5e87 40304d4 a1d5e87 b90aafb a1d5e87 b90aafb 34faf87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
license: apache-2.0
language:
- th
- zh
- en
metrics:
- accuracy
base_model:
- nectec/OpenThaiLLM-Prebuilt-7B
base_model_relation: finetune
pipeline_tag: text-generation
tags:
- chemistry
- biology
- finance
- legal
- code
- medical
- text-generation-inference
---
![](https://miro.medium.com/v2/resize:fit:4800/format:webp/1*LEONPJfI4dNGCAJ26eAMPA.png)
# **PathummaLLM-text-1.0.0-7B: Thai & China & English Large Language Model Instruct**
**PathummaLLM-text-1.0.0-7B** is a Thai 🇹🇭 & China 🇨🇳 & English 🇬🇧 large language model with 7 billion parameters, and it is Instruction finetune based on OpenThaiLLM-Prebuilt.
It demonstrates competitive performance with Openthaigpt1.5-7b-instruct, and its optimized for application use cases, Retrieval-Augmented Generation (RAG),
constrained generation, and reasoning tasks.
## **Model Detail**
For release notes, please see our [blog](https://medium.com/@superkingbasskb/pathummallm-v-1-0-0-release-6a098ddfe276).<br>
The detail about Text LLM part in this [blog](https://medium.com/@superkingbasskb/pathummallm-text-v-1-0-0-release-1fd41344b061).
## **Datasets ratio**
![](https://miro.medium.com/v2/resize:fit:1400/format:webp/1*1jA5wxc4WV_gcbwZCSMYlw.png)
## **Requirements**
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## **Support Community**
**https://discord.gg/3WJwJjZt7r**
## **Implementation**
Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate content.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"nectec/Pathumma-llm-text-1.0.0",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("nectec/Pathumma-llm-text-1.0.0")
prompt = "บริษัท A มีต้นทุนคงที่ 100,000 บาท และต้นทุนผันแปรต่อหน่วย 50 บาท ขายสินค้าได้ในราคา 150 บาทต่อหน่วย ต้องขายสินค้าอย่างน้อยกี่หน่วยเพื่อให้ถึงจุดคุ้มทุน?"
messages = [
{"role": "system", "content": "You are Pathumma LLM, created by NECTEC. Your are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096,
repetition_penalty=1.1,
temperature = 0.4
)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## **Implementation for GGUF**
```python
%pip install --quiet https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.90-cu124/llama_cpp_python-0.2.90-cp310-cp310-linux_x86_64.whl
import transformers
import torch
from llama_cpp import Llama
import os
import requests
local_dir = "your local dir"
directory_path = r'{local_dir}/Pathumma-llm-text-1.0.0'
if not os.path.exists(directory_path):
os.mkdir(directory_path)
if not os.path.exists(f'{local_dir}/Pathumma-llm-text-1.0.0/Pathumma-llm-it-7b-Q4_K_M.gguf'):
!wget -O f'{local_dir}/Pathumma-llm-text-1.0.0/Pathumma-llm-it-7b-Q4_K_M.gguf' "https://huggingface.co/nectec/Pathumma-llm-text-1.0.0/resolve/main/Pathumma-llm-it-7b-Q4_K_M.gguf?download=true"
# Initialize the Llama model
llm = Llama(model_path=f'{local_dir}/Pathumma-llm-text-1.0.0/Pathumma-llm-it-7b-Q4_K_M.gguf', n_gpu_layers=-1, n_ctx=8192,verbose=False)
tokenizer = transformers.AutoTokenizer.from_pretrained("nectec/Pathumma-llm-text-1.0.0")
memory = [{'content': 'You are Pathumma LLM, created by NECTEC (National Electronics and Computer Technology Center). Your are a helpful assistant.', 'role': 'system'},]
def generate(instuction,memory=memory):
memory.append({'content': instuction, 'role': 'user'})
p = tokenizer.apply_chat_template(
memory,
tokenize=False,
add_generation_prompt=True
)
response = llm(
p,
max_tokens=2048,
temperature=0.2,
top_p=0.95,
repeat_penalty=1.1,
top_k=40,
min_p=0.05,
stop=["<|im_end|>"]
)
output = response['choices'][0]['text']
memory.append({'content': output, 'role': 'assistant'})
return output
print(generate("คุณคือใคร"))
```
## **Evaluation Performance**
| Model | m3exam | thaiexam | xcopa | belebele | xnli | thaisentiment | XL sum | flores200 eng > th | flores200 th > eng | iapp | AVG(NLU) | AVG(MC) | AVG(NLG) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pathumma-llm-text-1.0.0 | **55.02** | 51.32 | 83 | 77.77 | **40.11** | 41.29 | 16.9286253 | 26.54 | **51.88** | 41.28 | 60.54 | **53.17** | 34.16 |
| Openthaigpt1.5-7b-instruct | 54.01 | **52.04** | **85.4** | **79.44** | 39.7 | **50.24** | 18.11 | 29.09 | 29.58 | 32.49 | **63.70** | 53.03 | 27.32 |
| SeaLLMs-v3-7B-Chat | 51.43 | 51.33 | 83.4 | 78.22 | 34.05 | 39.57 | 20.27 | **32.91** | 28.8 | 48.12 | 58.81 | 51.38 | 32.53 |
| llama-3-typhoon-v1.5-8B | 43.82 | 41.95 | 81.6 | 71.89 | 33.35 | 38.45 | 16.66 | 31.94 | 28.86 | 54.78 | 56.32 | 42.89 | 33.06 |
| Meta-Llama-3.1-8B-Instruct | 45.11 | 43.89 | 73.4 | 74.89 | 33.49 | 45.45 | **21.61** | 30.45 | 32.28 | **68.57** | 56.81 | 44.50 | **38.23** |
## **Contributor Contract**
**LLM Team**
Pakawat Phasook ([email protected])<br>
Jessada Pranee ([email protected])<br>
Arnon Saeoung ([email protected])<br>
Kun Kerdthaisong ([email protected])<br>
Kittisak Sukhantharat ([email protected])<br>
Piyawat Chuangkrud ([email protected])<br>
Chaianun Damrongrat ([email protected])<br>
Sarawoot Kongyoung ([email protected])
**Audio Team**
Pattara Tipaksorn ([email protected])<br>
Wayupuk Sommuang ([email protected])<br>
Oatsada Chatthong ([email protected])<br>
Kwanchiva Thangthai ([email protected])
**Vision Team**
Thirawarit Pitiphiphat ([email protected])<br>
Peerapas Ngokpon ([email protected])<br>
Theerasit Issaranon ([email protected])
## **Citation**
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
|