Another attempt
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 277.20 +/- 14.34
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e05161ee8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e05161ee950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e05161ee9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e05161eea70>", "_build": "<function ActorCriticPolicy._build at 0x7e05161eeb00>", "forward": "<function ActorCriticPolicy.forward at 0x7e05161eeb90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e05161eec20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e05161eecb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e05161eed40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e05161eedd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e05161eee60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e05161eeef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e05161976c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728997656240036949, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGYuizzsUZW5nfviusSWV7W8oIO7BD8GOgAAgD8AAIA/AH/LvCmQO7oxQsw7zM/ROQe9iLqzC2y6AACAPwAAgD8zMdu87Ly7P2UOpL7G910+XhQavNremb0AAAAAAAAAAGaakTuP5mW6s2KnOyu3zjZjHEw77x+/NQAAgD8AAIA/gAgcvSmcOLgaQYY4b2mVM2BEirurWp+3AACAPwAAgD8za9s7e4KZuv7aW7mxSyE1t4ApuogefDgAAIA/AACAP4AFNb1SMPi5NvyHujS4JDgvot2729qfOQAAgD8AAIA/zeTlO552tD/C6jU/REU/vZUVBbzj0yS+AAAAAAAAAACgEUY+8CqtPmojEr8kbXm+WVnVvdPR0r0AAAAAAAAAAICvPz1cW1+67TbDOuQMk7XTlM26FbLeuQAAgD8AAIA/mnlIvY8WS7perZY7Hmd9vQR0Zjs5hgy9AAAAAAAAAADagFG+n4SOPxQsLL5yWxC/7TJavta5NjwAAAAAAAAAAADVlz1cpwq6IsuiOLwZlbIIPum65aW8twAAgD8AAIA/GvLmPQpvLj4Ed5K+pf2RvjMAhTuiHG29AAAAAAAAAACa2U+9XAMqukIQjbow1cM0/N2ruhbsKrQAAIA/AACAP+bpuL3sKcC5o/8LPNllKraUOzs6iOcptQAAgD8AAIA/Gmw7PSkIP7ovVAo9drirNbGEFzkmr5c0AACAPwAAgD9AkqM9OzyWP1PcJD493hK/vULxPRNWBT0AAAAAAAAAADPVsLxSF6K7FheSvn94ybvje+e8PyKIvAAAgD8AAIA/mogMPVzfC7oTCQS8HZS1NkjWfrtYsyK2AACAPwAAgD8axrQ9uy2rP7YwID9SPKG+Gtk8Pe4CbD4AAAAAAAAAAAD68bxP3i49K6UZPltGjL4IFew9wmu5OwAAAAAAAAAAc+IfvlsRgT6Y8rC9iWk+vgeqJL4Zt4k4AAAAAAAAAAAznSS8j1ZTuvCJNjs1QQA2w/equaDZT7oAAIA/AACAP4A4nb2Fa4w4IfWiuy8pXbQ+iuq7wNnUMwAAgD8AAIA/Zs+9vVxTUrohDQ057sL2NdDiWzvNLya4AACAPwAAgD9wL36+0fQAvWeeObpZrsK4a7xlPv0ZcDkAAIA/AACAP2a/PL3hmoO632BJO6QfQzg8/Rg7W7X3uQAAgD8AAIA/5qxxvREz/D6iK129dCSKvgoYbLyqi4K8AAAAAAAAAABmpcO84W6Uuka4Mbty04i5SeEZO/3WUzoAAIA/AACAP2b7kDyhla8/UDRrPrP0p76z5SY886TtPQAAAAAAAAAAmlGfPPZ8HbpTa4K6xVGKtT1UnroXHpk5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLAzV+Zw4uMAWyUTegDjAF0lEdAl72mj4593XV9lChoBkdAW4WUbDMvAWgHTegDaAhHQJfCO0dBBzF1fZQoaAZHQF07A93bEgpoB03oA2gIR0CXyur9VFQVdX2UKGgGR0BcP5Z8rqdIaAdN6ANoCEdAl863g1m8NHV9lChoBkdAXOovSMLncWgHTegDaAhHQJfPWnO0LMN1fZQoaAZHQF24PiT+vQpoB03oA2gIR0CX1d0Bfa6CdX2UKGgGR0Be68/6fra/aAdN6ANoCEdAl9hc2R7qp3V9lChoBkdAYd8r9VFQVWgHTegDaAhHQJfco71ZkkN1fZQoaAZHQFKK6reZXuFoB0uoaAhHQJfk2sCDEm91fZQoaAZHQGGMRFiKBNFoB03oA2gIR0CX5R2x6fJ4dX2UKGgGR0BnLyJ9AooeaAdN6ANoCEdAl+tbgKnei3V9lChoBkdAXYkQZn+Q2mgHTegDaAhHQJf7hPhybQV1fZQoaAZHQGB0rg4wRGtoB03oA2gIR0CX/DxI8QqadX2UKGgGR0Bke9G0/nnuaAdN6ANoCEdAl/538O09hnV9lChoBkdAZVW9nscABGgHTegDaAhHQJgDK6/Zdv91fZQoaAZHQGWeA6ltTDRoB03oA2gIR0CYBmWZJCjUdX2UKGgGR0BSr6EvkBCEaAdN6ANoCEdAmAeml67dznV9lChoBkdAWU0dgfEGaGgHTegDaAhHQJgKpEtuk1x1fZQoaAZHQGMxfs/pt79oB03oA2gIR0CYDmflIVdpdX2UKGgGR0BkeTXpW3jNaAdN6ANoCEdAmA6O6Ae7tnV9lChoBkdAYL28dPtUoGgHTegDaAhHQJgUUbgjyFx1fZQoaAZHQGJ7REF4cFRoB03oA2gIR0CYFq0aZQYUdX2UKGgGR0BhOVahYeT3aAdN6ANoCEdAmBgg5BC2MXV9lChoBkdAYvHt2s7uD2gHTegDaAhHQJgYfSJCSid1fZQoaAZHQGUzQ4bS7XhoB03oA2gIR0CYGXA5q/M4dX2UKGgGR0BA5JvYODraaAdLjmgIR0CYHHnNgSezdX2UKGgGR0BCcXw1BMSLaAdLj2gIR0CYIBudPLxJdX2UKGgGR0BiFvkgfU4JaAdN6ANoCEdAmN+PMOf/WHV9lChoBkdASrgJ9iMHbGgHS8JoCEdAmONkB4lhPXV9lChoBkdAYPY1AJLM92gHTegDaAhHQJjkBTKkl/p1fZQoaAZHQGFPRHoX9BNoB03oA2gIR0CY5Cv6j323dX2UKGgGR0BQAhfjS5RTaAdLg2gIR0CY5N+X7cfvdX2UKGgGR0Bmo1QbdadMaAdN6ANoCEdAmOdd2LYPG3V9lChoBkdAZWX16mfoR2gHTegDaAhHQJjyoh1Tzd11fZQoaAZHQGavloDgZTBoB03oA2gIR0CY9Jjk+5e7dX2UKGgGR0BhMkGxD9fkaAdN6ANoCEdAmQJvChvitXV9lChoBkdAZGMkEcKgI2gHTegDaAhHQJkD4W3z+WJ1fZQoaAZHQGXD9VNpM6BoB03oA2gIR0CZBzdU83dcdX2UKGgGR0BfvipiqhlEaAdN6ANoCEdAmQwZ88cMmXV9lChoBkdAY+k5I6KceGgHTegDaAhHQJkUYCwKSgZ1fZQoaAZHQGVe4qG1x85oB03oA2gIR0CZGGE7nxJ/dX2UKGgGR0Bi4iyY5T60aAdN6ANoCEdAmR8LgGbCrXV9lChoBkdAYq7oFFDv3WgHTegDaAhHQJkhpD4QBgh1fZQoaAZHQGO7LPdEb5xoB03oA2gIR0CZJea+N96UdX2UKGgGR0Bgjfx4IKMOaAdN6ANoCEdAmS47VSXMQnV9lChoBkdAZdsTwlSjxmgHTegDaAhHQJkufXAdn011fZQoaAZHQF3VoiLVFx5oB03oA2gIR0CZNNXXiBGydX2UKGgGR0BP1cFyJbdKaAdLl2gIR0CZNeahYeT3dX2UKGgGR0BF+pNsWO6vaAdLvGgIR0CZP+bXHzYmdX2UKGgGR0BgR5eHBUJfaAdN6ANoCEdAmUULwvxpc3V9lChoBkdAYKRFzdUKiWgHTegDaAhHQJlFx0cOskp1fZQoaAZHQGDHcY64lQdoB03oA2gIR0CZR/L9/BnBdX2UKGgGR0Bj1NT987ZGaAdN6ANoCEdAmUx7ihnJ1nV9lChoBkdAWwtBE8aGYmgHTegDaAhHQJlPNkFwDNh1fZQoaAZHQGBTmb9ZRsNoB03oA2gIR0CZUGNqQA+7dX2UKGgGR0Bg56Jhvze5aAdN6ANoCEdAmV1R7NSqEXV9lChoBkdAY1p9tuUD+2gHTegDaAhHQJlfxqFh5Pd1fZQoaAZHQGObPYODrZ9oB03oA2gIR0CZYcJHAh0RdX2UKGgGR0BjgVcSoOx0aAdN6ANoCEdAmWLT4UN8V3V9lChoBkdAYVZHFxXGO2gHTegDaAhHQJlmN6AvtdB1fZQoaAZHQGNP7/n4fwJoB03oA2gIR0CZah8TSLIgdX2UKGgGR0Bop3dZaFEiaAdN6ANoCEdAmW0Va8pTdnV9lChoBkdAZKjh3qzJIWgHTegDaAhHQJlxIlgMMJB1fZQoaAZHQGUJLbQC0WxoB03oA2gIR0CZccfyf+S9dX2UKGgGR0BfCkXHim2taAdN6ANoCEdAmXHxNmDlHXV9lChoBkdAYh3u+h4+r2gHTegDaAhHQJlysSElE7Z1fZQoaAZHQGBUYYzi0fJoB03oA2gIR0CZdUmbb1yvdX2UKGgGR0Biob0Fr2xqaAdN6ANoCEdAmYURvrGBF3V9lChoBkdAZGEA2hqTKWgHTegDaAhHQJmHRvybx3F1fZQoaAZHQGONr5qM3qBoB03oA2gIR0CZlcGdI5HVdX2UKGgGR0BhW0Djin50aAdN6ANoCEdAmZc925hBq3V9lChoBkdAYHYa72+PBGgHTegDaAhHQJmasjJMg2Z1fZQoaAZHQGO2hStNi6RoB03oA2gIR0CZnm+JP69CdX2UKGgGR0BmaeMKkVN6aAdN6ANoCEdAmaUJFTefqXV9lChoBkdAYPhlS0jTrmgHTegDaAhHQJmo2ViWmgt1fZQoaAZHQGfXu6VdHDtoB03oA2gIR0CZsR/GVAzIdX2UKGgGR0BJ0M7EHdGiaAdLtmgIR0CZvWcQyylfdX2UKGgGR0BhxA6Oo5xSaAdN6ANoCEdAmcWBlxwQ2HV9lChoBkdAZWoq+8Gs3mgHTegDaAhHQJnFypR4yGl1fZQoaAZHQGY/Ko60Y0loB03oA2gIR0CZzNG/etSydX2UKGgGR0BbRn8wYcebaAdN6ANoCEdAmc38ynDR+nV9lChoBkdAXQMBHTZxrGgHTegDaAhHQJnYhYlpoK51fZQoaAZHQGGpQkX1rZdoB03oA2gIR0CZ3HNYbKigdX2UKGgGR0Bj+EP+XJHRaAdN6ANoCEdAmdz9To+wDHV9lChoBkdAYcI6Mir1d2gHTegDaAhHQJnenSSeRPp1fZQoaAZHQF1zbb1yvLZoB03oA2gIR0CZ4hd0aIepdX2UKGgGR0Bg98r08NhFaAdN6ANoCEdAmeSieVcD83V9lChoBkdAY94aYu01ImgHTegDaAhHQJnmT8WKuSx1fZQoaAZHQGJ3LNW2gFpoB03oA2gIR0CZ9tiQT238dX2UKGgGR0BLPPxYq5LAaAdLxmgIR0CZ99eWv8qGdX2UKGgGR0BiEnUhFEy+aAdN6ANoCEdAmflegHu7YnV9lChoBkdAYjWcjJMg2mgHTegDaAhHQJn7W2NNrTJ1fZQoaAZHQGJzCkwevIRoB03oA2gIR0CZ/HxKQJXydX2UKGgGR0BdMa1og3cYaAdN6ANoCEdAmf/aNyYG+3V9lChoBkdAZmL5dnkDIWgHTegDaAhHQJoDtZRsMy91fZQoaAZHQF7dImw7kn1oB03oA2gIR0CaBpxGDtgKdX2UKGgGR0BkGPGEPDpDaAdN6ANoCEdAmgpxYA80UHV9lChoBkdAW66JYT0xumgHTegDaAhHQJoLDDCP6sR1fZQoaAZHQFetJ9RaX8hoB03oA2gIR0CaCy7ZWaMKdX2UKGgGR0BnXYPVd5Y6aAdN6ANoCEdAmgvTNliBoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7842672c4700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7842672c4790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7842672c4820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7842672c48b0>", "_build": "<function ActorCriticPolicy._build at 0x7842672c4940>", "forward": "<function ActorCriticPolicy.forward at 0x7842672c49d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7842672c4a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7842672c4af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7842672c4b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7842672c4c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7842672c4ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7842672c4d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784267265f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729035310669125360, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM0Ucrt7RJK6CYWOue9shTK2GBe7AU6iOAAAgD8AAIA/Mzflu0ilgbqzeh84M5iysr6hb7tVVTW3AACAPwAAgD9NYhy9XIsIumEftTdAXGAyvBWaOgAb0LYAAIA/AACAPzN9g73DKUi64r90OhomDbZ7Pom752eMuQAAgD8AAIA/AKbsPEi/jrr6dsc60a+pNaV+O7t9Zee5AACAPwAAgD9m1LW8CrdEuWLOP7nJf8GzJZMEu5LDYDgAAIA/AACAP+aUAz32LGq6IGaQOpcIZjXvPNa69fCluQAAgD8AAIA/zQ6ePMroCT51UdW9y+WyvqdGCz2nXTS9AAAAAAAAAAAzpqC8w9UxOdFhEDm8BK4zp48VO5SeK7gAAIA/AACAPzYceb4AMqk+Ll22PqH1vb5IAXm940/GPQAAAAAAAAAAgGGKvRRAjrrHYJ+4gI2PsoB4O7uyv7Y3AACAPwAAgD+aRvW9H7eLu5jdsD4TUQS+gYOUvfiZpD4AAIA/AAAAAACAZblci326OsBJuBt7i7MZWiK68pJoNwAAgD8AAIA/5uNfPZQuwj8GeoE+j9CIvLeqhD115wc+AAAAAAAAAAAgJAC+PXY4u8FZPLtxSKa4qwx/PBo4cDoAAIA/AACAP81497zDVSi6ksO5uZEBJbVUACY7LvfXOAAAgD8AAIA/mnmaOo8eW7osKJy7VZZaOIjo1TraH5E4AACAPwAAgD+zABO9e26JuvZyj7s+H5U2iWTmud6OBrYAAIA/AACAPwAAOrwfBc63K3XLOsaXBTYwkZk5QKzwuQAAgD8AAIA/AGn+vFLA7LmlXTE4niR/MwpKJTpzjU63AACAPwAAgD+aImE95quVPw14Dz57khC/JenFPWU3yTwAAAAAAAAAAACltrz2+EO6J+4oOMlQSzOHFBe7QqNDtwAAgD8AAIA/mrOXva4thrq7PzY40R4eM30CljkNAU+3AACAPwAAgD+aJ/C89hw4ulZWJbjyRYyzW5WcOlzGPDcAAIA/AACAP1pY5L0freO5Pl7fuuM4UraMhUE6AWkBOgAAgD8AAIA/M1AcvVyDGbqdpcw22mmFMSHrvTplLOy1AACAPwAAgD8AkJG69jRTuktij7l3CiWz6PcROvPDpjgAAIA/AACAP81ok7xIt5a6brEVt9MCRrJ3c6g5Kq8qNgAAgD8AAIA/Zj5LPFyvR7riBqc6d91CNaNJnLtMh8S5AACAPwAAgD+aSpa9hcPeucyzp7KTy/IuQ4VJu9LDKDMAAIA/AACAP7Oyfr2P3h+6EjK/t2KksLKulSg6IP7jNgAAgD8AAIA/sxh+PcP1frog+GU6PEhuNqTfGzveaoO5AACAPwAAgD+a5b67w4lmutv42TpZiCs26Z+ROM2G+7kAAIA/AACAP5rrarxcAzO682O0Npp00DAlF6A5Bp7VtQAAgD8AAIA/5ozFvezJyLndOXW43DZNs6paPrlltow3AACAPwAAgD+aJbs8+4+ZvFr38L1QiS08Mkj4PexaozoAAIA/AACAP00MRL17Oo26CqeaOVUjUbNzV8q6ryuwuAAAgD8AAIA/s5aJPlm08D4/NJa+4Ikvv63Ybz4DaFK+AAAAAAAAAABAXrK9d281PlIqmL0LoL++i5W8vRjXLbwAAAAAAAAAADPb+Tv21Ae6QKpCu7mIAbdBDgW6O51kOgAAgD8AAIA/ZrBLPFzbCbrSkq26TPoHtkbVgTrrDc05AACAPwAAgD8zI/Y6SJOEur2QoraJf3UwwjJEu0pmuzUAAIA/AACAPwAjkTyPFgC6TWFhOgA4zrOZjKM6sZyEuQAAgD8AAIA/5oJuvVy7HbqRIwk7UUAuOMZCr7pMrqS5AACAPwAAgD+aHu88w7E4urCvJjp9lZC1z0E6O0xoRLkAAIA/AACAPwAGyr0paGy6yAOXvD0sszzRU4+6KjWbvQAAgD8AAIA/rbUCPqQtDT5G9re+niCOvm1YJL0VBTa+AAAAAAAAAAAAoLu7e9qGuvIIq7uHZUE4DONwOirQErYAAIA/AACAP5qmZT32rF+6+uKKu8RUlbaXmaA6ZREINgAAgD8AAIA/TZWOvfZkR7qsbYM5BuufNDu/WDou3pm4AACAPwAAgD8ATME7pNxCOtGFvbp0am28l3ZQOiGxlTsAAAAAAAAAALOuc71IO6O6pSUlOZOKFzS3tp+6IBg+uAAAgD8AAIA/es83PvSvXz92N8Y9fYskv9vSlT5U5K+8AAAAAAAAAABmUoe8SPGMuulkmDrAvAk2REX9OgxHrrkAAIA/AACAP02iWb3h4oC6WALlOprD1zVdLhU77rUFugAAgD8AAIA/TYVzvY9eTrqmlHs5nb2tNPupvrp+vpC4AACAPwAAgD8zlgm9KehDuhLzlbSpIy2wzH3AuSKhfDMAAIA/AACAP4C4lL1cbV+8IwP2PX3/fD0O6pS97t28OgAAgD8AAIA/NeWYvgj7/T56/pA+2ioTv8z4er5gxE4+AAAAAAAAAAA6vFQ+p4tkPuJ7xL5cJ96+TkRQPr4JXb4AAAAAAAAAAGbcdryPThC6ZmiUNTFUkTAx2ME4Gj+vtAAAgD8AAIA/M3/mPCnweroim7k74V+2N4quSroOd282AACAPwAAgD+zpRK9w6l/urq/XjiPb3kzIMY3uOjggbcAAIA/AACAP02vdr0fDfy51iVbOV3pnzTp4ck6s6N+uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTCuYhMajyMAWyUTegDjAF0lEdAtO/QS6DoQnV9lChoBkdAcdKnEETxomgHTXkBaAhHQLTwz32mHgx1fZQoaAZHQHOA59E1EVpoB01eAmgIR0C08M/GIbfhdX2UKGgGR0Bk9o4n4O+aaAdN6ANoCEdAtPFHPQfIS3V9lChoBkdAcBrntv4ub2gHTbkBaAhHQLTxaXyRSxZ1fZQoaAZHQGPd90A93bFoB03oA2gIR0C08bJg9eQddX2UKGgGR0Bwu86vJRwZaAdNlAJoCEdAtPM4xFiKBXV9lChoBkdAS4FrsSkCWGgHS5doCEdAtPOrDgqEvnV9lChoBkdAbiY4bS7XhGgHTTwBaAhHQLT0KGACnxd1fZQoaAZHQHN0HLFGXoloB021AWgIR0C09FUknkT6dX2UKGgGR0BlH12aDwpfaAdN6ANoCEdAtPRh34bjtHV9lChoBkdAccS3bmEGq2gHTUwCaAhHQLT0kNZeRgZ1fZQoaAZHQHH7/lMh5gRoB02gA2gIR0C09L4oqkM1dX2UKGgGR0BfmAHE/B3zaAdN6ANoCEdAtPT1B8hLXnV9lChoBkdAaJ4PRzBAOmgHTegDaAhHQLT3KFuvUz91fZQoaAZHQEoofvnbItFoB0uDaAhHQLT3eNgBtDV1fZQoaAZHQHF6k1EVnEloB03EAWgIR0C0+wbIxQBQdX2UKGgGR0Bg7M3XI2fkaAdN6ANoCEdAtPsmC2+fy3V9lChoBkdAanIDQJHAh2gHTegDaAhHQLT7Z94/u9h1fZQoaAZHQGkawHqu8sdoB03oA2gIR0C0+5E6HTJAdX2UKGgGR0BmBBwbVBldaAdN6ANoCEdAtPyJo+Ofd3V9lChoBkdAaGykj5bhWGgHTegDaAhHQLT80lFMIu51fZQoaAZHQGS0U5lvqC9oB03oA2gIR0C0/RhHTZxrdX2UKGgGR0Bk+0n5SFXaaAdN6ANoCEdAtP1/juKGcnV9lChoBkdAcPGGxUvPC2gHTbsBaAhHQLT9lwZflZJ1fZQoaAZHQHE6AWnCO3loB02lA2gIR0C0/aKhUR4AdX2UKGgGR0BBDizLOiWWaAdLe2gIR0C0/dvTCtRvdX2UKGgGR0BznE0cfeUIaAdNTwNoCEdAtP4gtXgccXV9lChoBkdAcIJm0mdAgWgHTRIBaAhHQLT+mZ/kNnZ1fZQoaAZHQGdtZEMLF4toB03oA2gIR0C0/xKtDD0ldX2UKGgGR0BT2kQf6oETaAdLpWgIR0C0//yzcAR1dX2UKGgGR0BozDQTmGM5aAdN6ANoCEdAtQLskzGgjHV9lChoBkdAUYdjoZAIIGgHS4BoCEdAtQPl7F85S3V9lChoBkdAcqjzp5eJHmgHS8ZoCEdAtQQ80YTCcnV9lChoBkdAcICmKIi1RmgHTYACaAhHQLUFvhNucc51fZQoaAZHQHD/D0cwQDpoB03hAWgIR0C1BlPN3W4FdX2UKGgGR0BxBRhy8zyjaAdN3wNoCEdAtQfCymhufnV9lChoBkdAZ6mFeOXE62gHTegDaAhHQLUJgUFSsKd1fZQoaAZHQGrxYuTRplBoB03oA2gIR0C1CqePeYUndX2UKGgGR0Bl1Qzi0fHQaAdN6ANoCEdAtQqphnanJnV9lChoBkdAcVo0uUUwjGgHTQsDaAhHQLULiWCVbA11fZQoaAZHQHEcAb6xgRdoB00yAmgIR0C1DJlQMx46dX2UKGgGR0BxdItWdVebaAdNCANoCEdAtQ1B23azvHV9lChoBkdAYsubDuSfUWgHTegDaAhHQLUOJcPOIIp1fZQoaAZHQHLhS2UjcEhoB01MA2gIR0C1DwHVwxWUdX2UKGgGR0BNvkvTPSlWaAdLkmgIR0C1D0Ih+vyLdX2UKGgGR0BjiTEP1+RYaAdN6ANoCEdAtRDPcnE2pHV9lChoBkdAaLursByS3mgHTegDaAhHQLURJ2zv7WN1fZQoaAZHQGNLsWweNkxoB03oA2gIR0C1EdUfgaWHdX2UKGgGR0BiQDW3BpHqaAdN6ANoCEdAtRIiL876pHV9lChoBkdAYbuQtBfKIWgHTegDaAhHQLUSI6By0a91fZQoaAZHQGU6HeizsyBoB03oA2gIR0C1Ejxf8dgfdX2UKGgGR0Bm+PYvnKW+aAdN6ANoCEdAtRRsyvcJt3V9lChoBkdAcw6qHXVbzWgHTSkDaAhHQLUVC0p3HJd1fZQoaAZHQHFnCuuA7PpoB0vkaAhHQLUXUnogV451fZQoaAZHQGR0ylFc6eZoB03oA2gIR0C1F1MkY4yXdX2UKGgGR0Bx7A9zOopAaAdNDQJoCEdAtRgcj2SMcnV9lChoBkdAcsAgte2NN2gHTRsCaAhHQLUYWCOWBz51fZQoaAZHQGZFpblijL1oB03oA2gIR0C1GMdDpkf+dX2UKGgGR0BpIqPZIxxlaAdN6ANoCEdAtRjG+0w8GXV9lChoBkdAZbzxlQMx5GgHTegDaAhHQLUYxy5Zr591fZQoaAZHQGhqyGrS3LFoB03oA2gIR0C1GMbTx5LRdX2UKGgGR0BnKIqwyIpIaAdN6ANoCEdAtRjHSYw7DHV9lChoBkdAZjII5YHPeGgHTegDaAhHQLUYx6Q/5cl1fZQoaAZHQGIyUqpcX3xoB03oA2gIR0C1GMiGahHtdX2UKGgGR0Bl1evbGm1qaAdN6ANoCEdAtRjJGWldknV9lChoBkdAYwYr92ovSWgHTegDaAhHQLUYyVeruIB1fZQoaAZHQHBOq8QI2O1oB004A2gIR0C1GcnDBMzudX2UKGgGR0BmHWzfJmulaAdN6ANoCEdAtRnpkK/mDHV9lChoBkdAahNHZsbedmgHTegDaAhHQLUbJNlyzX11fZQoaAZHQHDnCq2jO9poB01yA2gIR0C1Gy9ELH+7dX2UKGgGR0Bxog2XLNfPaAdNVgJoCEdAtRuEW69TP3V9lChoBkdAckqRoAXEZWgHTTADaAhHQLUc0iy6cy51fZQoaAZHQHGWfiYLLIRoB00lA2gIR0C1HPVdPci4dX2UKGgGR0BpGYGSpzcRaAdN6ANoCEdAtR0BKAavR3V9lChoBkdARSVZA6dUbWgHS3xoCEdAtR3uenQ6ZHV9lChoBkdAZjJyZrpJPWgHTegDaAhHQLUd7s/6frd1fZQoaAZHQGkdYZVGTcJoB03oA2gIR0C1Hg4bn5i3dX2UKGgGR0BymJ9d/rjYaAdNCwJoCEdAtR5ODCgsb3V9lChoBkdARJjQqqfe12gHS4VoCEdAtR5OdYnv2HV9lChoBkdAcfkp2ll9SmgHTZYCaAhHQLUe6YlpoK51fZQoaAZHQGf7dl/YraxoB03oA2gIR0C1HzxgZ0jkdX2UKGgGR0Bpd+fNA1NyaAdN6ANoCEdAtR9bRZ2ZA3V9lChoBkdAaHYN4qwyI2gHTegDaAhHQLUfhAprk811fZQoaAZHQHI2DkMkQf9oB03oAWgIR0C1IIcGgSOBdX2UKGgGR0Bk4skrwvxpaAdN6ANoCEdAtSIbP3SKFnV9lChoBkdAbu6j3225QWgHTZkBaAhHQLUicpXIU8F1fZQoaAZHQHO9QOBlMAZoB00uA2gIR0C1Iy4A4n4PdX2UKGgGR0Bv80aqCHymaAdLwWgIR0C1JAazu4PPdX2UKGgGR0BkLM1fmcOLaAdN6ANoCEdAtSRMDB/I83V9lChoBkdAYyBlq8DjimgHTegDaAhHQLUku4R28qZ1fZQoaAZHQGVRbVrhzeZoB03oA2gIR0C1JTgEZBLPdX2UKGgGR0Bqupf0Eov0aAdN6ANoCEdAtSVwipvP1XV9lChoBkdAR5A8p1A7gmgHS2BoCEdAtSVw7p3X7XV9lChoBkdAcQ3/tY0VJ2gHTTcDaAhHQLUlkcu8K5V1fZQoaAZHQGZPIHTqjahoB03oA2gIR0C1JZywwCbMdX2UKGgGR0Byhpr0rbxmaAdN5wNoCEdAtSW8/oq0+nV9lChoBkdAcCiYmb9ZR2gHS8ZoCEdAtSdAcWCVbHV9lChoBkdAcJkkJ8fFJmgHTbkCaAhHQLUnxhakhzN1fZQoaAZHQFAkgZ0jkdVoB0uQaAhHQLUpBhXbM5h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78bf08f25e7770711bfaa2dbe444329ea6228262af6508b6c642007c4aafb83e
|
3 |
+
size 149669
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,16 +26,16 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,7 +76,7 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7842672c4700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7842672c4790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7842672c4820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7842672c48b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7842672c4940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7842672c49d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7842672c4a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7842672c4af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7842672c4b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7842672c4c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7842672c4ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7842672c4d30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x784267265f40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1729035310669125360,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM0Ucrt7RJK6CYWOue9shTK2GBe7AU6iOAAAgD8AAIA/Mzflu0ilgbqzeh84M5iysr6hb7tVVTW3AACAPwAAgD9NYhy9XIsIumEftTdAXGAyvBWaOgAb0LYAAIA/AACAPzN9g73DKUi64r90OhomDbZ7Pom752eMuQAAgD8AAIA/AKbsPEi/jrr6dsc60a+pNaV+O7t9Zee5AACAPwAAgD9m1LW8CrdEuWLOP7nJf8GzJZMEu5LDYDgAAIA/AACAP+aUAz32LGq6IGaQOpcIZjXvPNa69fCluQAAgD8AAIA/zQ6ePMroCT51UdW9y+WyvqdGCz2nXTS9AAAAAAAAAAAzpqC8w9UxOdFhEDm8BK4zp48VO5SeK7gAAIA/AACAPzYceb4AMqk+Ll22PqH1vb5IAXm940/GPQAAAAAAAAAAgGGKvRRAjrrHYJ+4gI2PsoB4O7uyv7Y3AACAPwAAgD+aRvW9H7eLu5jdsD4TUQS+gYOUvfiZpD4AAIA/AAAAAACAZblci326OsBJuBt7i7MZWiK68pJoNwAAgD8AAIA/5uNfPZQuwj8GeoE+j9CIvLeqhD115wc+AAAAAAAAAAAgJAC+PXY4u8FZPLtxSKa4qwx/PBo4cDoAAIA/AACAP81497zDVSi6ksO5uZEBJbVUACY7LvfXOAAAgD8AAIA/mnmaOo8eW7osKJy7VZZaOIjo1TraH5E4AACAPwAAgD+zABO9e26JuvZyj7s+H5U2iWTmud6OBrYAAIA/AACAPwAAOrwfBc63K3XLOsaXBTYwkZk5QKzwuQAAgD8AAIA/AGn+vFLA7LmlXTE4niR/MwpKJTpzjU63AACAPwAAgD+aImE95quVPw14Dz57khC/JenFPWU3yTwAAAAAAAAAAACltrz2+EO6J+4oOMlQSzOHFBe7QqNDtwAAgD8AAIA/mrOXva4thrq7PzY40R4eM30CljkNAU+3AACAPwAAgD+aJ/C89hw4ulZWJbjyRYyzW5WcOlzGPDcAAIA/AACAP1pY5L0freO5Pl7fuuM4UraMhUE6AWkBOgAAgD8AAIA/M1AcvVyDGbqdpcw22mmFMSHrvTplLOy1AACAPwAAgD8AkJG69jRTuktij7l3CiWz6PcROvPDpjgAAIA/AACAP81ok7xIt5a6brEVt9MCRrJ3c6g5Kq8qNgAAgD8AAIA/Zj5LPFyvR7riBqc6d91CNaNJnLtMh8S5AACAPwAAgD+aSpa9hcPeucyzp7KTy/IuQ4VJu9LDKDMAAIA/AACAP7Oyfr2P3h+6EjK/t2KksLKulSg6IP7jNgAAgD8AAIA/sxh+PcP1frog+GU6PEhuNqTfGzveaoO5AACAPwAAgD+a5b67w4lmutv42TpZiCs26Z+ROM2G+7kAAIA/AACAP5rrarxcAzO682O0Npp00DAlF6A5Bp7VtQAAgD8AAIA/5ozFvezJyLndOXW43DZNs6paPrlltow3AACAPwAAgD+aJbs8+4+ZvFr38L1QiS08Mkj4PexaozoAAIA/AACAP00MRL17Oo26CqeaOVUjUbNzV8q6ryuwuAAAgD8AAIA/s5aJPlm08D4/NJa+4Ikvv63Ybz4DaFK+AAAAAAAAAABAXrK9d281PlIqmL0LoL++i5W8vRjXLbwAAAAAAAAAADPb+Tv21Ae6QKpCu7mIAbdBDgW6O51kOgAAgD8AAIA/ZrBLPFzbCbrSkq26TPoHtkbVgTrrDc05AACAPwAAgD8zI/Y6SJOEur2QoraJf3UwwjJEu0pmuzUAAIA/AACAPwAjkTyPFgC6TWFhOgA4zrOZjKM6sZyEuQAAgD8AAIA/5oJuvVy7HbqRIwk7UUAuOMZCr7pMrqS5AACAPwAAgD+aHu88w7E4urCvJjp9lZC1z0E6O0xoRLkAAIA/AACAPwAGyr0paGy6yAOXvD0sszzRU4+6KjWbvQAAgD8AAIA/rbUCPqQtDT5G9re+niCOvm1YJL0VBTa+AAAAAAAAAAAAoLu7e9qGuvIIq7uHZUE4DONwOirQErYAAIA/AACAP5qmZT32rF+6+uKKu8RUlbaXmaA6ZREINgAAgD8AAIA/TZWOvfZkR7qsbYM5BuufNDu/WDou3pm4AACAPwAAgD8ATME7pNxCOtGFvbp0am28l3ZQOiGxlTsAAAAAAAAAALOuc71IO6O6pSUlOZOKFzS3tp+6IBg+uAAAgD8AAIA/es83PvSvXz92N8Y9fYskv9vSlT5U5K+8AAAAAAAAAABmUoe8SPGMuulkmDrAvAk2REX9OgxHrrkAAIA/AACAP02iWb3h4oC6WALlOprD1zVdLhU77rUFugAAgD8AAIA/TYVzvY9eTrqmlHs5nb2tNPupvrp+vpC4AACAPwAAgD8zlgm9KehDuhLzlbSpIy2wzH3AuSKhfDMAAIA/AACAP4C4lL1cbV+8IwP2PX3/fD0O6pS97t28OgAAgD8AAIA/NeWYvgj7/T56/pA+2ioTv8z4er5gxE4+AAAAAAAAAAA6vFQ+p4tkPuJ7xL5cJ96+TkRQPr4JXb4AAAAAAAAAAGbcdryPThC6ZmiUNTFUkTAx2ME4Gj+vtAAAgD8AAIA/M3/mPCnweroim7k74V+2N4quSroOd282AACAPwAAgD+zpRK9w6l/urq/XjiPb3kzIMY3uOjggbcAAIA/AACAP02vdr0fDfy51iVbOV3pnzTp4ck6s6N+uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTCuYhMajyMAWyUTegDjAF0lEdAtO/QS6DoQnV9lChoBkdAcdKnEETxomgHTXkBaAhHQLTwz32mHgx1fZQoaAZHQHOA59E1EVpoB01eAmgIR0C08M/GIbfhdX2UKGgGR0Bk9o4n4O+aaAdN6ANoCEdAtPFHPQfIS3V9lChoBkdAcBrntv4ub2gHTbkBaAhHQLTxaXyRSxZ1fZQoaAZHQGPd90A93bFoB03oA2gIR0C08bJg9eQddX2UKGgGR0Bwu86vJRwZaAdNlAJoCEdAtPM4xFiKBXV9lChoBkdAS4FrsSkCWGgHS5doCEdAtPOrDgqEvnV9lChoBkdAbiY4bS7XhGgHTTwBaAhHQLT0KGACnxd1fZQoaAZHQHN0HLFGXoloB021AWgIR0C09FUknkT6dX2UKGgGR0BlH12aDwpfaAdN6ANoCEdAtPRh34bjtHV9lChoBkdAccS3bmEGq2gHTUwCaAhHQLT0kNZeRgZ1fZQoaAZHQHH7/lMh5gRoB02gA2gIR0C09L4oqkM1dX2UKGgGR0BfmAHE/B3zaAdN6ANoCEdAtPT1B8hLXnV9lChoBkdAaJ4PRzBAOmgHTegDaAhHQLT3KFuvUz91fZQoaAZHQEoofvnbItFoB0uDaAhHQLT3eNgBtDV1fZQoaAZHQHF6k1EVnEloB03EAWgIR0C0+wbIxQBQdX2UKGgGR0Bg7M3XI2fkaAdN6ANoCEdAtPsmC2+fy3V9lChoBkdAanIDQJHAh2gHTegDaAhHQLT7Z94/u9h1fZQoaAZHQGkawHqu8sdoB03oA2gIR0C0+5E6HTJAdX2UKGgGR0BmBBwbVBldaAdN6ANoCEdAtPyJo+Ofd3V9lChoBkdAaGykj5bhWGgHTegDaAhHQLT80lFMIu51fZQoaAZHQGS0U5lvqC9oB03oA2gIR0C0/RhHTZxrdX2UKGgGR0Bk+0n5SFXaaAdN6ANoCEdAtP1/juKGcnV9lChoBkdAcPGGxUvPC2gHTbsBaAhHQLT9lwZflZJ1fZQoaAZHQHE6AWnCO3loB02lA2gIR0C0/aKhUR4AdX2UKGgGR0BBDizLOiWWaAdLe2gIR0C0/dvTCtRvdX2UKGgGR0BznE0cfeUIaAdNTwNoCEdAtP4gtXgccXV9lChoBkdAcIJm0mdAgWgHTRIBaAhHQLT+mZ/kNnZ1fZQoaAZHQGdtZEMLF4toB03oA2gIR0C0/xKtDD0ldX2UKGgGR0BT2kQf6oETaAdLpWgIR0C0//yzcAR1dX2UKGgGR0BozDQTmGM5aAdN6ANoCEdAtQLskzGgjHV9lChoBkdAUYdjoZAIIGgHS4BoCEdAtQPl7F85S3V9lChoBkdAcqjzp5eJHmgHS8ZoCEdAtQQ80YTCcnV9lChoBkdAcICmKIi1RmgHTYACaAhHQLUFvhNucc51fZQoaAZHQHD/D0cwQDpoB03hAWgIR0C1BlPN3W4FdX2UKGgGR0BxBRhy8zyjaAdN3wNoCEdAtQfCymhufnV9lChoBkdAZ6mFeOXE62gHTegDaAhHQLUJgUFSsKd1fZQoaAZHQGrxYuTRplBoB03oA2gIR0C1CqePeYUndX2UKGgGR0Bl1Qzi0fHQaAdN6ANoCEdAtQqphnanJnV9lChoBkdAcVo0uUUwjGgHTQsDaAhHQLULiWCVbA11fZQoaAZHQHEcAb6xgRdoB00yAmgIR0C1DJlQMx46dX2UKGgGR0BxdItWdVebaAdNCANoCEdAtQ1B23azvHV9lChoBkdAYsubDuSfUWgHTegDaAhHQLUOJcPOIIp1fZQoaAZHQHLhS2UjcEhoB01MA2gIR0C1DwHVwxWUdX2UKGgGR0BNvkvTPSlWaAdLkmgIR0C1D0Ih+vyLdX2UKGgGR0BjiTEP1+RYaAdN6ANoCEdAtRDPcnE2pHV9lChoBkdAaLursByS3mgHTegDaAhHQLURJ2zv7WN1fZQoaAZHQGNLsWweNkxoB03oA2gIR0C1EdUfgaWHdX2UKGgGR0BiQDW3BpHqaAdN6ANoCEdAtRIiL876pHV9lChoBkdAYbuQtBfKIWgHTegDaAhHQLUSI6By0a91fZQoaAZHQGU6HeizsyBoB03oA2gIR0C1Ejxf8dgfdX2UKGgGR0Bm+PYvnKW+aAdN6ANoCEdAtRRsyvcJt3V9lChoBkdAcw6qHXVbzWgHTSkDaAhHQLUVC0p3HJd1fZQoaAZHQHFnCuuA7PpoB0vkaAhHQLUXUnogV451fZQoaAZHQGR0ylFc6eZoB03oA2gIR0C1F1MkY4yXdX2UKGgGR0Bx7A9zOopAaAdNDQJoCEdAtRgcj2SMcnV9lChoBkdAcsAgte2NN2gHTRsCaAhHQLUYWCOWBz51fZQoaAZHQGZFpblijL1oB03oA2gIR0C1GMdDpkf+dX2UKGgGR0BpIqPZIxxlaAdN6ANoCEdAtRjG+0w8GXV9lChoBkdAZbzxlQMx5GgHTegDaAhHQLUYxy5Zr591fZQoaAZHQGhqyGrS3LFoB03oA2gIR0C1GMbTx5LRdX2UKGgGR0BnKIqwyIpIaAdN6ANoCEdAtRjHSYw7DHV9lChoBkdAZjII5YHPeGgHTegDaAhHQLUYx6Q/5cl1fZQoaAZHQGIyUqpcX3xoB03oA2gIR0C1GMiGahHtdX2UKGgGR0Bl1evbGm1qaAdN6ANoCEdAtRjJGWldknV9lChoBkdAYwYr92ovSWgHTegDaAhHQLUYyVeruIB1fZQoaAZHQHBOq8QI2O1oB004A2gIR0C1GcnDBMzudX2UKGgGR0BmHWzfJmulaAdN6ANoCEdAtRnpkK/mDHV9lChoBkdAahNHZsbedmgHTegDaAhHQLUbJNlyzX11fZQoaAZHQHDnCq2jO9poB01yA2gIR0C1Gy9ELH+7dX2UKGgGR0Bxog2XLNfPaAdNVgJoCEdAtRuEW69TP3V9lChoBkdAckqRoAXEZWgHTTADaAhHQLUc0iy6cy51fZQoaAZHQHGWfiYLLIRoB00lA2gIR0C1HPVdPci4dX2UKGgGR0BpGYGSpzcRaAdN6ANoCEdAtR0BKAavR3V9lChoBkdARSVZA6dUbWgHS3xoCEdAtR3uenQ6ZHV9lChoBkdAZjJyZrpJPWgHTegDaAhHQLUd7s/6frd1fZQoaAZHQGkdYZVGTcJoB03oA2gIR0C1Hg4bn5i3dX2UKGgGR0BymJ9d/rjYaAdNCwJoCEdAtR5ODCgsb3V9lChoBkdARJjQqqfe12gHS4VoCEdAtR5OdYnv2HV9lChoBkdAcfkp2ll9SmgHTZYCaAhHQLUe6YlpoK51fZQoaAZHQGf7dl/YraxoB03oA2gIR0C1HzxgZ0jkdX2UKGgGR0Bpd+fNA1NyaAdN6ANoCEdAtR9bRZ2ZA3V9lChoBkdAaHYN4qwyI2gHTegDaAhHQLUfhAprk811fZQoaAZHQHI2DkMkQf9oB03oAWgIR0C1IIcGgSOBdX2UKGgGR0Bk4skrwvxpaAdN6ANoCEdAtSIbP3SKFnV9lChoBkdAbu6j3225QWgHTZkBaAhHQLUicpXIU8F1fZQoaAZHQHO9QOBlMAZoB00uA2gIR0C1Iy4A4n4PdX2UKGgGR0Bv80aqCHymaAdLwWgIR0C1JAazu4PPdX2UKGgGR0BkLM1fmcOLaAdN6ANoCEdAtSRMDB/I83V9lChoBkdAYyBlq8DjimgHTegDaAhHQLUku4R28qZ1fZQoaAZHQGVRbVrhzeZoB03oA2gIR0C1JTgEZBLPdX2UKGgGR0Bqupf0Eov0aAdN6ANoCEdAtSVwipvP1XV9lChoBkdAR5A8p1A7gmgHS2BoCEdAtSVw7p3X7XV9lChoBkdAcQ3/tY0VJ2gHTTcDaAhHQLUlkcu8K5V1fZQoaAZHQGZPIHTqjahoB03oA2gIR0C1JZywwCbMdX2UKGgGR0Byhpr0rbxmaAdN5wNoCEdAtSW8/oq0+nV9lChoBkdAcCiYmb9ZR2gHS8ZoCEdAtSdAcWCVbHV9lChoBkdAcJkkJ8fFJmgHTbkCaAhHQLUnxhakhzN1fZQoaAZHQFAkgZ0jkdVoB0uQaAhHQLUpBhXbM5h1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 240,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 64,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87978
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58905a68df75bc45df78fd12e6cca31d558facf2cb35250e5f2f1afa3281ecaf
|
3 |
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd1326266a642389d0f73457df159d7cab163612923c1b5c33e62b51831c36e
|
3 |
size 43634
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 277.1992371, "std_reward": 14.338659751844085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-16T00:11:07.865828"}
|