File size: 845 Bytes
bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 6440c99 bfb4150 c1b1e96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
language: en
license: apache-2.0
tags:
- lora
- adapter
---
# LoRA Adapter for [Base Model Name]
This is a LoRA adapter trained on [describe your training data and task].
## Usage
To use this adapter:
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model_name = "base_model_name"
adapter_name = "your-username/your-lora-adapter-name"
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, adapter_name)
# Use the model
input_text = "Your input text here"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
|