File size: 3,890 Bytes
38d2ead
 
 
f1f9557
 
 
 
cf250c0
f1f9557
 
 
 
 
 
7a06573
 
f1f9557
 
 
 
 
54e2586
f1f9557
 
 
 
5cbba9c
f1f9557
 
5cbba9c
f1f9557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab860e
 
 
 
 
 
 
 
 
 
 
 
f1f9557
 
cf250c0
 
 
3256421
 
 
 
 
 
 
 
 
 
 
cf250c0
 
f1f9557
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
---
# Positive Transfer Of The Whisper Speech Transformer To Human And Animal Voice Activity Detection
We proposed WhisperSeg, utilizing the Whisper Transformer pre-trained for Automatic Speech Recognition (ASR) for both human and animal Voice Activity Detection (VAD). For more details, please refer to our paper

>
> [**Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection**](https://doi.org/10.1101/2023.09.30.560270)
> 
> Nianlong Gu, Kanghwi Lee, Maris Basha, Sumit Kumar Ram, Guanghao You, Richard H. R. Hahnloser <br>
> University of Zurich and ETH Zurich


The model "nccratliri/whisperseg-large-ms-ct2" is the CTranslate2 version of the multi-species WhisperSeg-large that was finetuned on the vocal segmentation datasets of five species.

**This model is used for faster inference.**

## Usage
### Clone the GitHub repo and install dependencies
```bash
git clone https://github.com/nianlonggu/WhisperSeg.git
cd WhisperSeg; pip install -r requirements.txt
```

Then in the folder "WhisperSeg", run the following python script:
```python
from model import WhisperSegmenterFast
import librosa
import json
segmenter = WhisperSegmenterFast( "nccratliri/whisperseg-large-ms-ct2", device="cuda" )

sr = 32000  
min_frequency = 0
spec_time_step = 0.0025
min_segment_length = 0.01
eps = 0.02
num_trials = 3

audio, _ = librosa.load( "data/example_subset/Zebra_finch/test_adults/zebra_finch_g17y2U-f00007.wav", 
                         sr = sr )

prediction = segmenter.segment(  audio, sr = sr, min_frequency = min_frequency, spec_time_step = spec_time_step,
                       min_segment_length = min_segment_length, eps = eps,num_trials = num_trials )
print(prediction)
```
  {'onset': [0.01, 0.38, 0.603, 0.758, 0.912, 1.813, 1.967, 2.073, 2.838, 2.982, 3.112, 3.668, 3.828, 3.953, 5.158, 5.323, 5.467], 'offset': [0.073, 0.447, 0.673, 0.83, 1.483, 1.882, 2.037, 2.643, 2.893, 3.063, 3.283, 3.742, 3.898, 4.523, 5.223, 5.393, 6.043], 'cluster': ['zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0']}

Visualize the results of WhisperSeg:
```python
from audio_utils import SpecViewer
spec_viewer = SpecViewer()
spec_viewer.visualize( audio = audio, sr = sr, min_frequency= min_frequency, prediction = prediction,
                       window_size=8, precision_bits=1 
                     )
```
![vis](https://github.com/nianlonggu/WhisperSeg/blob/master/assets/res_zebra_finch_adults_prediction_only.png?raw=true)

Run it in Google Colab: <a href="https://colab.research.google.com/github/nianlonggu/WhisperSeg/blob/master/docs/WhisperSeg_Voice_Activity_Detection_Demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>

For more details, please refer to the GitHub repository: https://github.com/nianlonggu/WhisperSeg

## Citation
When using our code or models for your work, please cite the following paper:
```
@INPROCEEDINGS{10447620,
  author={Gu, Nianlong and Lee, Kanghwi and Basha, Maris and Kumar Ram, Sumit and You, Guanghao and Hahnloser, Richard H. R.},
  booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection}, 
  year={2024},
  volume={},
  number={},
  pages={7505-7509},
  keywords={Voice activity detection;Adaptation models;Animals;Transformers;Acoustics;Human voice;Spectrogram;Voice activity detection;audio segmentation;Transformer;Whisper},
  doi={10.1109/ICASSP48485.2024.10447620}}

```

## Contact
[email protected]