nianlong commited on
Commit
8b828ec
·
verified ·
1 Parent(s): 1e0ae00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,3 +1,73 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # Positive Transfer Of The Whisper Speech Transformer To Human And Animal Voice Activity Detection
5
+ We proposed **WhisperSeg**, utilizing the Whisper Transformer pre-trained for Automatic Speech Recognition (ASR) for both human and animal Voice Activity Detection (VAD). For more details, please refer to our paper:
6
+ > [**Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection**](https://doi.org/10.1101/2023.09.30.560270)
7
+ >
8
+ > Nianlong Gu, Kanghwi Lee, Maris Basha, Sumit Kumar Ram, Guanghao You, Richard H. R. Hahnloser <br>
9
+ > University of Zurich and ETH Zurich
10
+
11
+ *Accepted to the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024)*
12
+
13
+
14
+ The model "nccratliri/whisperseg-animal-vad-ct2" is the Ctranslate2 version of "nccratliri/whisperseg-animal-vad". It can only be used for faster inference. For finetuning the model, use "nccratliri/whisperseg-animal-vad" instead.
15
+
16
+ The "xxx-ct2" model need to be loaded by WhisperSegmenterFast (instead of WhisperSegmenter)
17
+
18
+ ## Usage
19
+ ### Clone the GitHub repo and install dependencies
20
+ ```bash
21
+ git clone https://github.com/nianlonggu/WhisperSeg.git
22
+ cd WhisperSeg; pip install -r requirements.txt
23
+ ```
24
+
25
+ Then in the folder "WhisperSeg", run the following python script:
26
+ ```python
27
+ from model import WhisperSegmenterFast
28
+ import librosa
29
+ import json
30
+ segmenter = WhisperSegmenterFast( "nccratliri/whisperseg-animal-vad-ct2", device="cuda" )
31
+
32
+ sr = 32000
33
+ spec_time_step = 0.0025
34
+
35
+ audio, _ = librosa.load( "data/example_subset/Zebra_finch/test_adults/zebra_finch_g17y2U-f00007.wav",
36
+ sr = sr )
37
+ ## Note if spec_time_step is not provided, a default value will be used by the model.
38
+ prediction = segmenter.segment( audio, sr = sr, spec_time_step = spec_time_step )
39
+ print(prediction)
40
+ ```
41
+ {'onset': [0.01, 0.38, 0.603, 0.758, 0.912, 1.813, 1.967, 2.073, 2.838, 2.982, 3.112, 3.668, 3.828, 3.953, 5.158, 5.323, 5.467], 'offset': [0.073, 0.447, 0.673, 0.83, 1.483, 1.882, 2.037, 2.643, 2.893, 3.063, 3.283, 3.742, 3.898, 4.523, 5.223, 5.393, 6.043], 'cluster': ['zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0']}
42
+
43
+ Visualize the results of WhisperSeg:
44
+ ```python
45
+ from audio_utils import SpecViewer
46
+ spec_viewer = SpecViewer()
47
+ spec_viewer.visualize( audio = audio, sr = sr, min_frequency= min_frequency, prediction = prediction,
48
+ window_size=8, precision_bits=1
49
+ )
50
+ ```
51
+ ![vis](https://github.com/nianlonggu/WhisperSeg/blob/master/assets/res_zebra_finch_adults_prediction_only.png?raw=true)
52
+
53
+ Run it in Google Colab:
54
+ <a href="https://colab.research.google.com/github/nianlonggu/WhisperSeg/blob/master/docs/WhisperSeg_Voice_Activity_Detection_Demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
55
+ For more details, please refer to the GitHub repository: https://github.com/nianlonggu/WhisperSeg
56
+
57
+ ## Citation
58
+ When using our code or models for your work, please cite the following paper:
59
+ ```
60
+ @INPROCEEDINGS{10447620,
61
+ author={Gu, Nianlong and Lee, Kanghwi and Basha, Maris and Kumar Ram, Sumit and You, Guanghao and Hahnloser, Richard H. R.},
62
+ booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
63
+ title={Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection},
64
+ year={2024},
65
+ volume={},
66
+ number={},
67
+ pages={7505-7509},
68
+ keywords={Voice activity detection;Adaptation models;Animals;Transformers;Acoustics;Human voice;Spectrogram;Voice activity detection;audio segmentation;Transformer;Whisper},
69
+ doi={10.1109/ICASSP48485.2024.10447620}}
70
+ ```
71
+
72
+ ## Contact
73