File size: 3,894 Bytes
9b215a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07de81
 
 
 
 
 
 
9b215a0
d07de81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b215a0
fec6f45
 
 
 
 
9e14b8f
 
 
 
 
 
 
 
 
 
 
 
fec6f45
 
71c6fde
 
 
 
 
 
 
 
 
 
9b215a0
71c6fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e14b8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- en
- hi
- de
- ar
- bn
- fi
- ja
- zh
- id
- sw
- ta
- gr
- ru
- es
- th
- tr
- vi
- multilingual
datasets:
- squad_v2
- tydiqa
- mlqa
- xquad
- germanquad
widget:
- text: 'Hugging Face has seen rapid growth in its popularity since the get-go. It
    is definitely doing the right things to attract more and more people to its platform,
    some of which are on the following lines: Community driven approach through large
    open source repositories along with paid services. Helps to build a network of
    like-minded people passionate about open source. Attractive price point. The subscription-based
    features, e.g.: Inference based API, starts at a price of $9/month.'
  example_title: English
- text: 'A un año y tres días de que el balón ruede en el Al Bayt Stadium inaugurando
    el Mundial 2022, ya se han dibujado los primeros bocetos de la próxima Copa del
    Mundo.13 selecciones están colocadas en el mapa con la etiqueta de clasificadas
    y tienen asegurado pisar los verdes de Qatar en la primera fase final  otoñal.
    Serbia, Dinamarca, España, Países Bajos, Suiza, Croacia, Francia, Inglaterra,
    Bélgica, Alemania, Brasil, Argentina y Qatar, como anfitriona, entrarán en   el
    sorteo del 1 de abril de 2022 en Doha en el que 32 paísses serán repartidos en
    sus respectivos grupos. '
  example_title: Spanish
---
# Multi-lingual Question Generating Model (mt5-base)
Give the model a passage and it will generate a question about the passage.  

## Trained on the following datasets:

- [SQuAD (English)](https://rajpurkar.github.io/SQuAD-explorer/)
- [TyDiQA-GoldP (Arabic, Bengali, Finnish, Japanese, Indonesian, Kiswahili, Korean, Russian, Telugu, Thai)](https://github.com/google-research-datasets/tydiqa)
- [MLQA (Arabic, Chinese, English, German, Hindi, Spanish, Vietnames)](https://github.com/facebookresearch/MLQA)
- [XQuAD (Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish Vietnamese)](https://github.com/deepmind/xquad)
- [GermanQuAD (German)](https://huggingface.co/datasets/deepset/germanquad)
- [Persian QA (Persian)](https://www.kaggle.com/sajjadayobi360/persianqa)
- [Bengali QA (Bengali)](https://www.kaggle.com/mayeesha/bengali-question-answering-dataset)
- [chaii (Hindi, Tamil)](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data)


## Training details
I used [flax summarization script](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) and a TPU v3-8. Summarization expects a text column and a summary column. For question generation training, use the context column instead of text column and question instead of summary column.


There is no guarantee that it will produce a question in the language of the passage, but it usually does. Lower resource languages will likely have lower quality questions.


## Using the model

#### PyTorch version
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
  
tokenizer = AutoTokenizer.from_pretrained("nbroad/mt5-base-qgen")
model = AutoModelForSeq2SeqLM.from_pretrained("nbroad/mt5-base-qgen")

text = "Hugging Face has seen rapid growth in its \
popularity since the get-go. It is definitely doing\
 the right things to attract more and more people to \
 its platform, some of which are on the following lines:\
Community driven approach through large open source repositories \
along with paid services. Helps to build a network of like-minded\
 people passionate about open source. \
Attractive price point. The subscription-based features, e.g.: \
Inference based API, starts at a price of $9/month.\
"

inputs = tokenizer(text, return_tensors="pt")
output = model.generate(**inputs, max_length=40)

tokenizer.decode(output[0], skip_special_tokens=True)
# What is Hugging Face's price point?
```

Model trained on Cloud TPUs from Google's TPU Research Cloud (TRC)