File size: 6,835 Bytes
70a4467
9044672
70a4467
849a008
 
 
 
 
 
 
 
9044672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a4467
 
849a008
 
 
 
 
 
c6c13af
 
 
 
 
 
 
 
 
 
 
 
 
849a008
 
 
 
 
 
 
 
 
 
 
 
012651a
849a008
012651a
 
 
849a008
 
012651a
849a008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012651a
849a008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9044672
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
license: llama3
library_name: transformers
tags:
- experimental
base_model:
- nbeerbower/llama-3-bophades-v1-8B
datasets:
- jondurbin/gutenberg-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- flammenai/FlameMix-DPO-v1
model-index:
- name: llama-3-sauce-v2-8B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.11
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.39
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nbeerbower/llama-3-sauce-v2-8B
      name: Open LLM Leaderboard
---

# llama-3-sauce-v2-8B

This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)

This is a bad finetune on nbeerbower/llama-3-spicy-abliterated-stella-8B using various DPO sets.

# Chat Format

Please use the ChatML format or you may experience poor results.

```
<|im_start|>system
{System Prompt Here!}<|im_end|>
<|im_start|>assistant
{Message from AI}<|im_end|>
<|im_start|>user
{Message from User}<|im_end|>
```

# Method

Finetuned using an A100 on Google Colab.

[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)

### Configuration

Dataset preparation:

```python
def chatml_format(example):
    # Format system
    system = ""
    if example.get('system') and len(example['system']) > 0:
        systemMessage = example['system']
        system = "<|im_start|>system\n" + systemMessage + "<|im_end|>\n"

    # Format instruction
    prompt = "<|im_start|>user\n" + example['prompt'] + "<|im_end|>\n<|im_start|>assistant\n"

    # Format chosen answer
    chosen = example['chosen'] + "<|im_end|>\n"

    # Format rejected answer
    rejected = example['rejected'] + "<|im_end|>\n"

    return {
        "prompt": system + prompt,
        "chosen": chosen,
        "rejected": rejected,
    }

# Array of datasets to concat
ds = [
    "jondurbin/truthy-dpo-v0.1",
    "jondurbin/gutenberg-dpo-v0.1",
    "flammenai/FlameMix-DPO-v1"
]

# load_dataset and combine all
loaded_datasets = [load_dataset(dataset_name, split='train') for dataset_name in ds]
dataset = concatenate_datasets(loaded_datasets)

# Save columns
original_columns = dataset.column_names

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"

# Format dataset
dataset = dataset.map(
    chatml_format,
    remove_columns=original_columns
)
```

LoRA, model, and training settings:

```python
# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=1,
    gradient_accumulation_steps=1,
    gradient_checkpointing=True,
    learning_rate=3e-5,
    lr_scheduler_type="cosine",
    max_steps=4000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__llama-3-sauce-v2-8B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |70.38|
|AI2 Reasoning Challenge (25-Shot)|65.61|
|HellaSwag (10-Shot)              |83.11|
|MMLU (5-Shot)                    |67.98|
|TruthfulQA (0-shot)              |56.39|
|Winogrande (5-shot)              |76.72|
|GSM8k (5-shot)                   |72.48|