Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +918 -0
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,918 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: Show me data_asset_kpi_cf group by quarter.
|
14 |
+
- text: i want to get trend analysis and group by product
|
15 |
+
- text: Can I have data_asset_kpi_bs details.
|
16 |
+
- text: I don't want to produce that specific data.
|
17 |
+
- text: What are the details of the orders placed before December 31st, 2023?
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.9915254237288136
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 7 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:-------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| Lookup | <ul><li>"Show me the products with 'Tablet' in the name and filter by price above 200."</li><li>'Can you get me the products with a price above 100?'</li><li>'Filter by employees with a salary above 60,000 and show me their first names.'</li></ul> |
|
66 |
+
| Aggregation | <ul><li>'What’s the total revenue generated by each employee in 2023?'</li><li>'Get me data_asset_001_pcc group by category.'</li><li>'Show me max revenue'</li></ul> |
|
67 |
+
| Tablejoin | <ul><li>'Show me a merge of key performance metrics and cash flow.'</li><li>'How can I integrate the Customers and Orders tables to identify customers with multiple recent orders?'</li><li>'Can you integrate data from the Products and Orders tables to determine the revenue generated by each product?'</li></ul> |
|
68 |
+
| Viewtables | <ul><li>'How can I view all of the tables stored within the starhub_data_asset database?'</li><li>'What are the tables that I can access in the starhub_data_asset database?'</li><li>'What are the available tables that are relevant to pricing strategies within starhub_data_asset database?'</li></ul> |
|
69 |
+
| Lookup_1 | <ul><li>'Display data_asset_kpi_cf.'</li><li>'Get me data_asset_001_ta trend history.'</li><li>'Show me data_asset_kpi_cf details.'</li></ul> |
|
70 |
+
| Rejection | <ul><li>"I don't want to apply any filters now."</li><li>"I don't want to apply any filters to this."</li><li>"I'd prefer not to apply any filters."</li></ul> |
|
71 |
+
| Generalreply | <ul><li>"What's your favorite TV show of all time?"</li><li>"i'll start dinner at 6:00."</li><li>"Oh, that's a tough one! There are so many good memories to choose from. But if I had to pick just one, I think it would be spending summers at my grandparent's house. We would play board games, make homemade ice cream, and have big family dinners. It was always so much fun!"</li></ul> |
|
72 |
+
|
73 |
+
## Evaluation
|
74 |
+
|
75 |
+
### Metrics
|
76 |
+
| Label | Accuracy |
|
77 |
+
|:--------|:---------|
|
78 |
+
| **all** | 0.9915 |
|
79 |
+
|
80 |
+
## Uses
|
81 |
+
|
82 |
+
### Direct Use for Inference
|
83 |
+
|
84 |
+
First install the SetFit library:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install setfit
|
88 |
+
```
|
89 |
+
|
90 |
+
Then you can load this model and run inference.
|
91 |
+
|
92 |
+
```python
|
93 |
+
from setfit import SetFitModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10-2nd")
|
97 |
+
# Run inference
|
98 |
+
preds = model("Can I have data_asset_kpi_bs details.")
|
99 |
+
```
|
100 |
+
|
101 |
+
<!--
|
102 |
+
### Downstream Use
|
103 |
+
|
104 |
+
*List how someone could finetune this model on their own dataset.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Out-of-Scope Use
|
109 |
+
|
110 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
## Bias, Risks and Limitations
|
115 |
+
|
116 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Recommendations
|
121 |
+
|
122 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
## Training Details
|
126 |
+
|
127 |
+
### Training Set Metrics
|
128 |
+
| Training set | Min | Median | Max |
|
129 |
+
|:-------------|:----|:-------|:----|
|
130 |
+
| Word count | 1 | 8.8375 | 62 |
|
131 |
+
|
132 |
+
| Label | Training Sample Count |
|
133 |
+
|:-------------|:----------------------|
|
134 |
+
| Tablejoin | 122 |
|
135 |
+
| Rejection | 69 |
|
136 |
+
| Aggregation | 287 |
|
137 |
+
| Lookup | 59 |
|
138 |
+
| Generalreply | 71 |
|
139 |
+
| Viewtables | 79 |
|
140 |
+
| Lookup_1 | 156 |
|
141 |
+
|
142 |
+
### Training Hyperparameters
|
143 |
+
- batch_size: (16, 16)
|
144 |
+
- num_epochs: (1, 1)
|
145 |
+
- max_steps: -1
|
146 |
+
- sampling_strategy: oversampling
|
147 |
+
- body_learning_rate: (2e-05, 1e-05)
|
148 |
+
- head_learning_rate: 0.01
|
149 |
+
- loss: CosineSimilarityLoss
|
150 |
+
- distance_metric: cosine_distance
|
151 |
+
- margin: 0.25
|
152 |
+
- end_to_end: False
|
153 |
+
- use_amp: False
|
154 |
+
- warmup_proportion: 0.1
|
155 |
+
- seed: 42
|
156 |
+
- eval_max_steps: -1
|
157 |
+
- load_best_model_at_end: True
|
158 |
+
|
159 |
+
### Training Results
|
160 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
161 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
162 |
+
| 0.0000 | 1 | 0.2355 | - |
|
163 |
+
| 0.0014 | 50 | 0.2202 | - |
|
164 |
+
| 0.0028 | 100 | 0.1664 | - |
|
165 |
+
| 0.0042 | 150 | 0.216 | - |
|
166 |
+
| 0.0056 | 200 | 0.2341 | - |
|
167 |
+
| 0.0070 | 250 | 0.2279 | - |
|
168 |
+
| 0.0084 | 300 | 0.1786 | - |
|
169 |
+
| 0.0098 | 350 | 0.1603 | - |
|
170 |
+
| 0.0112 | 400 | 0.0821 | - |
|
171 |
+
| 0.0126 | 450 | 0.1498 | - |
|
172 |
+
| 0.0140 | 500 | 0.0942 | - |
|
173 |
+
| 0.0155 | 550 | 0.0999 | - |
|
174 |
+
| 0.0169 | 600 | 0.0895 | - |
|
175 |
+
| 0.0183 | 650 | 0.0841 | - |
|
176 |
+
| 0.0197 | 700 | 0.1433 | - |
|
177 |
+
| 0.0211 | 750 | 0.0808 | - |
|
178 |
+
| 0.0225 | 800 | 0.0346 | - |
|
179 |
+
| 0.0239 | 850 | 0.0556 | - |
|
180 |
+
| 0.0253 | 900 | 0.0755 | - |
|
181 |
+
| 0.0267 | 950 | 0.0346 | - |
|
182 |
+
| 0.0281 | 1000 | 0.0486 | - |
|
183 |
+
| 0.0295 | 1050 | 0.0207 | - |
|
184 |
+
| 0.0309 | 1100 | 0.0126 | - |
|
185 |
+
| 0.0323 | 1150 | 0.0113 | - |
|
186 |
+
| 0.0337 | 1200 | 0.0076 | - |
|
187 |
+
| 0.0351 | 1250 | 0.0082 | - |
|
188 |
+
| 0.0365 | 1300 | 0.0142 | - |
|
189 |
+
| 0.0379 | 1350 | 0.011 | - |
|
190 |
+
| 0.0393 | 1400 | 0.0034 | - |
|
191 |
+
| 0.0407 | 1450 | 0.0123 | - |
|
192 |
+
| 0.0421 | 1500 | 0.0062 | - |
|
193 |
+
| 0.0435 | 1550 | 0.0021 | - |
|
194 |
+
| 0.0449 | 1600 | 0.005 | - |
|
195 |
+
| 0.0464 | 1650 | 0.0124 | - |
|
196 |
+
| 0.0478 | 1700 | 0.0026 | - |
|
197 |
+
| 0.0492 | 1750 | 0.0029 | - |
|
198 |
+
| 0.0506 | 1800 | 0.0023 | - |
|
199 |
+
| 0.0520 | 1850 | 0.0017 | - |
|
200 |
+
| 0.0534 | 1900 | 0.0027 | - |
|
201 |
+
| 0.0548 | 1950 | 0.0017 | - |
|
202 |
+
| 0.0562 | 2000 | 0.0043 | - |
|
203 |
+
| 0.0576 | 2050 | 0.0018 | - |
|
204 |
+
| 0.0590 | 2100 | 0.0032 | - |
|
205 |
+
| 0.0604 | 2150 | 0.0022 | - |
|
206 |
+
| 0.0618 | 2200 | 0.0052 | - |
|
207 |
+
| 0.0632 | 2250 | 0.0025 | - |
|
208 |
+
| 0.0646 | 2300 | 0.0018 | - |
|
209 |
+
| 0.0660 | 2350 | 0.0016 | - |
|
210 |
+
| 0.0674 | 2400 | 0.0016 | - |
|
211 |
+
| 0.0688 | 2450 | 0.001 | - |
|
212 |
+
| 0.0702 | 2500 | 0.0015 | - |
|
213 |
+
| 0.0716 | 2550 | 0.0013 | - |
|
214 |
+
| 0.0730 | 2600 | 0.0012 | - |
|
215 |
+
| 0.0744 | 2650 | 0.0012 | - |
|
216 |
+
| 0.0759 | 2700 | 0.0017 | - |
|
217 |
+
| 0.0773 | 2750 | 0.0016 | - |
|
218 |
+
| 0.0787 | 2800 | 0.0018 | - |
|
219 |
+
| 0.0801 | 2850 | 0.0007 | - |
|
220 |
+
| 0.0815 | 2900 | 0.0008 | - |
|
221 |
+
| 0.0829 | 2950 | 0.0016 | - |
|
222 |
+
| 0.0843 | 3000 | 0.0008 | - |
|
223 |
+
| 0.0857 | 3050 | 0.0011 | - |
|
224 |
+
| 0.0871 | 3100 | 0.0013 | - |
|
225 |
+
| 0.0885 | 3150 | 0.0012 | - |
|
226 |
+
| 0.0899 | 3200 | 0.0006 | - |
|
227 |
+
| 0.0913 | 3250 | 0.0012 | - |
|
228 |
+
| 0.0927 | 3300 | 0.0009 | - |
|
229 |
+
| 0.0941 | 3350 | 0.0007 | - |
|
230 |
+
| 0.0955 | 3400 | 0.0006 | - |
|
231 |
+
| 0.0969 | 3450 | 0.0011 | - |
|
232 |
+
| 0.0983 | 3500 | 0.0012 | - |
|
233 |
+
| 0.0997 | 3550 | 0.0008 | - |
|
234 |
+
| 0.1011 | 3600 | 0.0009 | - |
|
235 |
+
| 0.1025 | 3650 | 0.0007 | - |
|
236 |
+
| 0.1039 | 3700 | 0.001 | - |
|
237 |
+
| 0.1053 | 3750 | 0.0006 | - |
|
238 |
+
| 0.1068 | 3800 | 0.0008 | - |
|
239 |
+
| 0.1082 | 3850 | 0.0007 | - |
|
240 |
+
| 0.1096 | 3900 | 0.0008 | - |
|
241 |
+
| 0.1110 | 3950 | 0.0006 | - |
|
242 |
+
| 0.1124 | 4000 | 0.0004 | - |
|
243 |
+
| 0.1138 | 4050 | 0.001 | - |
|
244 |
+
| 0.1152 | 4100 | 0.001 | - |
|
245 |
+
| 0.1166 | 4150 | 0.0007 | - |
|
246 |
+
| 0.1180 | 4200 | 0.0006 | - |
|
247 |
+
| 0.1194 | 4250 | 0.0006 | - |
|
248 |
+
| 0.1208 | 4300 | 0.0004 | - |
|
249 |
+
| 0.1222 | 4350 | 0.0008 | - |
|
250 |
+
| 0.1236 | 4400 | 0.0005 | - |
|
251 |
+
| 0.1250 | 4450 | 0.0007 | - |
|
252 |
+
| 0.1264 | 4500 | 0.0007 | - |
|
253 |
+
| 0.1278 | 4550 | 0.001 | - |
|
254 |
+
| 0.1292 | 4600 | 0.0007 | - |
|
255 |
+
| 0.1306 | 4650 | 0.0005 | - |
|
256 |
+
| 0.1320 | 4700 | 0.0006 | - |
|
257 |
+
| 0.1334 | 4750 | 0.0007 | - |
|
258 |
+
| 0.1348 | 4800 | 0.0003 | - |
|
259 |
+
| 0.1363 | 4850 | 0.0009 | - |
|
260 |
+
| 0.1377 | 4900 | 0.0008 | - |
|
261 |
+
| 0.1391 | 4950 | 0.0005 | - |
|
262 |
+
| 0.1405 | 5000 | 0.0005 | - |
|
263 |
+
| 0.1419 | 5050 | 0.0005 | - |
|
264 |
+
| 0.1433 | 5100 | 0.0005 | - |
|
265 |
+
| 0.1447 | 5150 | 0.0004 | - |
|
266 |
+
| 0.1461 | 5200 | 0.0005 | - |
|
267 |
+
| 0.1475 | 5250 | 0.0006 | - |
|
268 |
+
| 0.1489 | 5300 | 0.0007 | - |
|
269 |
+
| 0.1503 | 5350 | 0.0004 | - |
|
270 |
+
| 0.1517 | 5400 | 0.0007 | - |
|
271 |
+
| 0.1531 | 5450 | 0.0006 | - |
|
272 |
+
| 0.1545 | 5500 | 0.0006 | - |
|
273 |
+
| 0.1559 | 5550 | 0.0005 | - |
|
274 |
+
| 0.1573 | 5600 | 0.0005 | - |
|
275 |
+
| 0.1587 | 5650 | 0.0005 | - |
|
276 |
+
| 0.1601 | 5700 | 0.0007 | - |
|
277 |
+
| 0.1615 | 5750 | 0.0007 | - |
|
278 |
+
| 0.1629 | 5800 | 0.0004 | - |
|
279 |
+
| 0.1643 | 5850 | 0.0007 | - |
|
280 |
+
| 0.1657 | 5900 | 0.0006 | - |
|
281 |
+
| 0.1672 | 5950 | 0.0005 | - |
|
282 |
+
| 0.1686 | 6000 | 0.0005 | - |
|
283 |
+
| 0.1700 | 6050 | 0.0004 | - |
|
284 |
+
| 0.1714 | 6100 | 0.0005 | - |
|
285 |
+
| 0.1728 | 6150 | 0.0005 | - |
|
286 |
+
| 0.1742 | 6200 | 0.0004 | - |
|
287 |
+
| 0.1756 | 6250 | 0.0006 | - |
|
288 |
+
| 0.1770 | 6300 | 0.0004 | - |
|
289 |
+
| 0.1784 | 6350 | 0.0004 | - |
|
290 |
+
| 0.1798 | 6400 | 0.0004 | - |
|
291 |
+
| 0.1812 | 6450 | 0.0005 | - |
|
292 |
+
| 0.1826 | 6500 | 0.0005 | - |
|
293 |
+
| 0.1840 | 6550 | 0.0004 | - |
|
294 |
+
| 0.1854 | 6600 | 0.0003 | - |
|
295 |
+
| 0.1868 | 6650 | 0.0004 | - |
|
296 |
+
| 0.1882 | 6700 | 0.0004 | - |
|
297 |
+
| 0.1896 | 6750 | 0.0004 | - |
|
298 |
+
| 0.1910 | 6800 | 0.0006 | - |
|
299 |
+
| 0.1924 | 6850 | 0.0004 | - |
|
300 |
+
| 0.1938 | 6900 | 0.0004 | - |
|
301 |
+
| 0.1952 | 6950 | 0.0003 | - |
|
302 |
+
| 0.1967 | 7000 | 0.0004 | - |
|
303 |
+
| 0.1981 | 7050 | 0.0004 | - |
|
304 |
+
| 0.1995 | 7100 | 0.0003 | - |
|
305 |
+
| 0.2009 | 7150 | 0.0006 | - |
|
306 |
+
| 0.2023 | 7200 | 0.0005 | - |
|
307 |
+
| 0.2037 | 7250 | 0.0005 | - |
|
308 |
+
| 0.2051 | 7300 | 0.0003 | - |
|
309 |
+
| 0.2065 | 7350 | 0.0003 | - |
|
310 |
+
| 0.2079 | 7400 | 0.0004 | - |
|
311 |
+
| 0.2093 | 7450 | 0.0006 | - |
|
312 |
+
| 0.2107 | 7500 | 0.0004 | - |
|
313 |
+
| 0.2121 | 7550 | 0.0003 | - |
|
314 |
+
| 0.2135 | 7600 | 0.0005 | - |
|
315 |
+
| 0.2149 | 7650 | 0.0005 | - |
|
316 |
+
| 0.2163 | 7700 | 0.0005 | - |
|
317 |
+
| 0.2177 | 7750 | 0.0003 | - |
|
318 |
+
| 0.2191 | 7800 | 0.0004 | - |
|
319 |
+
| 0.2205 | 7850 | 0.0003 | - |
|
320 |
+
| 0.2219 | 7900 | 0.0004 | - |
|
321 |
+
| 0.2233 | 7950 | 0.0003 | - |
|
322 |
+
| 0.2247 | 8000 | 0.0003 | - |
|
323 |
+
| 0.2261 | 8050 | 0.0008 | - |
|
324 |
+
| 0.2276 | 8100 | 0.0003 | - |
|
325 |
+
| 0.2290 | 8150 | 0.0003 | - |
|
326 |
+
| 0.2304 | 8200 | 0.0003 | - |
|
327 |
+
| 0.2318 | 8250 | 0.0003 | - |
|
328 |
+
| 0.2332 | 8300 | 0.0004 | - |
|
329 |
+
| 0.2346 | 8350 | 0.0003 | - |
|
330 |
+
| 0.2360 | 8400 | 0.0002 | - |
|
331 |
+
| 0.2374 | 8450 | 0.0005 | - |
|
332 |
+
| 0.2388 | 8500 | 0.0003 | - |
|
333 |
+
| 0.2402 | 8550 | 0.0002 | - |
|
334 |
+
| 0.2416 | 8600 | 0.0005 | - |
|
335 |
+
| 0.2430 | 8650 | 0.0005 | - |
|
336 |
+
| 0.2444 | 8700 | 0.0005 | - |
|
337 |
+
| 0.2458 | 8750 | 0.0002 | - |
|
338 |
+
| 0.2472 | 8800 | 0.0004 | - |
|
339 |
+
| 0.2486 | 8850 | 0.0003 | - |
|
340 |
+
| 0.2500 | 8900 | 0.0002 | - |
|
341 |
+
| 0.2514 | 8950 | 0.0003 | - |
|
342 |
+
| 0.2528 | 9000 | 0.0003 | - |
|
343 |
+
| 0.2542 | 9050 | 0.0002 | - |
|
344 |
+
| 0.2556 | 9100 | 0.0003 | - |
|
345 |
+
| 0.2571 | 9150 | 0.0003 | - |
|
346 |
+
| 0.2585 | 9200 | 0.0005 | - |
|
347 |
+
| 0.2599 | 9250 | 0.0004 | - |
|
348 |
+
| 0.2613 | 9300 | 0.0002 | - |
|
349 |
+
| 0.2627 | 9350 | 0.0002 | - |
|
350 |
+
| 0.2641 | 9400 | 0.0003 | - |
|
351 |
+
| 0.2655 | 9450 | 0.0003 | - |
|
352 |
+
| 0.2669 | 9500 | 0.0003 | - |
|
353 |
+
| 0.2683 | 9550 | 0.0002 | - |
|
354 |
+
| 0.2697 | 9600 | 0.0003 | - |
|
355 |
+
| 0.2711 | 9650 | 0.0003 | - |
|
356 |
+
| 0.2725 | 9700 | 0.0003 | - |
|
357 |
+
| 0.2739 | 9750 | 0.0006 | - |
|
358 |
+
| 0.2753 | 9800 | 0.0003 | - |
|
359 |
+
| 0.2767 | 9850 | 0.0002 | - |
|
360 |
+
| 0.2781 | 9900 | 0.0003 | - |
|
361 |
+
| 0.2795 | 9950 | 0.0004 | - |
|
362 |
+
| 0.2809 | 10000 | 0.0005 | - |
|
363 |
+
| 0.2823 | 10050 | 0.0003 | - |
|
364 |
+
| 0.2837 | 10100 | 0.0003 | - |
|
365 |
+
| 0.2851 | 10150 | 0.0003 | - |
|
366 |
+
| 0.2865 | 10200 | 0.0004 | - |
|
367 |
+
| 0.2880 | 10250 | 0.0004 | - |
|
368 |
+
| 0.2894 | 10300 | 0.0003 | - |
|
369 |
+
| 0.2908 | 10350 | 0.0003 | - |
|
370 |
+
| 0.2922 | 10400 | 0.0003 | - |
|
371 |
+
| 0.2936 | 10450 | 0.0002 | - |
|
372 |
+
| 0.2950 | 10500 | 0.0003 | - |
|
373 |
+
| 0.2964 | 10550 | 0.0002 | - |
|
374 |
+
| 0.2978 | 10600 | 0.0003 | - |
|
375 |
+
| 0.2992 | 10650 | 0.0003 | - |
|
376 |
+
| 0.3006 | 10700 | 0.0003 | - |
|
377 |
+
| 0.3020 | 10750 | 0.0003 | - |
|
378 |
+
| 0.3034 | 10800 | 0.0003 | - |
|
379 |
+
| 0.3048 | 10850 | 0.0004 | - |
|
380 |
+
| 0.3062 | 10900 | 0.0003 | - |
|
381 |
+
| 0.3076 | 10950 | 0.0002 | - |
|
382 |
+
| 0.3090 | 11000 | 0.0003 | - |
|
383 |
+
| 0.3104 | 11050 | 0.0002 | - |
|
384 |
+
| 0.3118 | 11100 | 0.0003 | - |
|
385 |
+
| 0.3132 | 11150 | 0.0002 | - |
|
386 |
+
| 0.3146 | 11200 | 0.0003 | - |
|
387 |
+
| 0.3160 | 11250 | 0.0004 | - |
|
388 |
+
| 0.3175 | 11300 | 0.0003 | - |
|
389 |
+
| 0.3189 | 11350 | 0.0003 | - |
|
390 |
+
| 0.3203 | 11400 | 0.0003 | - |
|
391 |
+
| 0.3217 | 11450 | 0.0001 | - |
|
392 |
+
| 0.3231 | 11500 | 0.0002 | - |
|
393 |
+
| 0.3245 | 11550 | 0.0003 | - |
|
394 |
+
| 0.3259 | 11600 | 0.0003 | - |
|
395 |
+
| 0.3273 | 11650 | 0.0002 | - |
|
396 |
+
| 0.3287 | 11700 | 0.0004 | - |
|
397 |
+
| 0.3301 | 11750 | 0.0003 | - |
|
398 |
+
| 0.3315 | 11800 | 0.0002 | - |
|
399 |
+
| 0.3329 | 11850 | 0.0003 | - |
|
400 |
+
| 0.3343 | 11900 | 0.0003 | - |
|
401 |
+
| 0.3357 | 11950 | 0.0003 | - |
|
402 |
+
| 0.3371 | 12000 | 0.0003 | - |
|
403 |
+
| 0.3385 | 12050 | 0.0002 | - |
|
404 |
+
| 0.3399 | 12100 | 0.0002 | - |
|
405 |
+
| 0.3413 | 12150 | 0.0002 | - |
|
406 |
+
| 0.3427 | 12200 | 0.0002 | - |
|
407 |
+
| 0.3441 | 12250 | 0.0003 | - |
|
408 |
+
| 0.3455 | 12300 | 0.0003 | - |
|
409 |
+
| 0.3469 | 12350 | 0.0003 | - |
|
410 |
+
| 0.3484 | 12400 | 0.0003 | - |
|
411 |
+
| 0.3498 | 12450 | 0.0002 | - |
|
412 |
+
| 0.3512 | 12500 | 0.0003 | - |
|
413 |
+
| 0.3526 | 12550 | 0.0002 | - |
|
414 |
+
| 0.3540 | 12600 | 0.0004 | - |
|
415 |
+
| 0.3554 | 12650 | 0.0003 | - |
|
416 |
+
| 0.3568 | 12700 | 0.0003 | - |
|
417 |
+
| 0.3582 | 12750 | 0.0003 | - |
|
418 |
+
| 0.3596 | 12800 | 0.0002 | - |
|
419 |
+
| 0.3610 | 12850 | 0.0002 | - |
|
420 |
+
| 0.3624 | 12900 | 0.0003 | - |
|
421 |
+
| 0.3638 | 12950 | 0.0002 | - |
|
422 |
+
| 0.3652 | 13000 | 0.0003 | - |
|
423 |
+
| 0.3666 | 13050 | 0.0002 | - |
|
424 |
+
| 0.3680 | 13100 | 0.0003 | - |
|
425 |
+
| 0.3694 | 13150 | 0.0003 | - |
|
426 |
+
| 0.3708 | 13200 | 0.0003 | - |
|
427 |
+
| 0.3722 | 13250 | 0.0002 | - |
|
428 |
+
| 0.3736 | 13300 | 0.0002 | - |
|
429 |
+
| 0.3750 | 13350 | 0.0003 | - |
|
430 |
+
| 0.3764 | 13400 | 0.0002 | - |
|
431 |
+
| 0.3779 | 13450 | 0.0004 | - |
|
432 |
+
| 0.3793 | 13500 | 0.0003 | - |
|
433 |
+
| 0.3807 | 13550 | 0.0002 | - |
|
434 |
+
| 0.3821 | 13600 | 0.0003 | - |
|
435 |
+
| 0.3835 | 13650 | 0.0002 | - |
|
436 |
+
| 0.3849 | 13700 | 0.0003 | - |
|
437 |
+
| 0.3863 | 13750 | 0.0003 | - |
|
438 |
+
| 0.3877 | 13800 | 0.0003 | - |
|
439 |
+
| 0.3891 | 13850 | 0.0002 | - |
|
440 |
+
| 0.3905 | 13900 | 0.0003 | - |
|
441 |
+
| 0.3919 | 13950 | 0.0002 | - |
|
442 |
+
| 0.3933 | 14000 | 0.0003 | - |
|
443 |
+
| 0.3947 | 14050 | 0.0004 | - |
|
444 |
+
| 0.3961 | 14100 | 0.0003 | - |
|
445 |
+
| 0.3975 | 14150 | 0.0003 | - |
|
446 |
+
| 0.3989 | 14200 | 0.0003 | - |
|
447 |
+
| 0.4003 | 14250 | 0.0002 | - |
|
448 |
+
| 0.4017 | 14300 | 0.0003 | - |
|
449 |
+
| 0.4031 | 14350 | 0.0002 | - |
|
450 |
+
| 0.4045 | 14400 | 0.0003 | - |
|
451 |
+
| 0.4059 | 14450 | 0.0002 | - |
|
452 |
+
| 0.4073 | 14500 | 0.0002 | - |
|
453 |
+
| 0.4088 | 14550 | 0.0002 | - |
|
454 |
+
| 0.4102 | 14600 | 0.0002 | - |
|
455 |
+
| 0.4116 | 14650 | 0.0002 | - |
|
456 |
+
| 0.4130 | 14700 | 0.0002 | - |
|
457 |
+
| 0.4144 | 14750 | 0.0004 | - |
|
458 |
+
| 0.4158 | 14800 | 0.0002 | - |
|
459 |
+
| 0.4172 | 14850 | 0.0002 | - |
|
460 |
+
| 0.4186 | 14900 | 0.0002 | - |
|
461 |
+
| 0.4200 | 14950 | 0.0002 | - |
|
462 |
+
| 0.4214 | 15000 | 0.0003 | - |
|
463 |
+
| 0.4228 | 15050 | 0.0002 | - |
|
464 |
+
| 0.4242 | 15100 | 0.0003 | - |
|
465 |
+
| 0.4256 | 15150 | 0.0002 | - |
|
466 |
+
| 0.4270 | 15200 | 0.0003 | - |
|
467 |
+
| 0.4284 | 15250 | 0.0003 | - |
|
468 |
+
| 0.4298 | 15300 | 0.0003 | - |
|
469 |
+
| 0.4312 | 15350 | 0.0013 | - |
|
470 |
+
| 0.4326 | 15400 | 0.0002 | - |
|
471 |
+
| 0.4340 | 15450 | 0.0002 | - |
|
472 |
+
| 0.4354 | 15500 | 0.0003 | - |
|
473 |
+
| 0.4368 | 15550 | 0.0003 | - |
|
474 |
+
| 0.4383 | 15600 | 0.0002 | - |
|
475 |
+
| 0.4397 | 15650 | 0.0002 | - |
|
476 |
+
| 0.4411 | 15700 | 0.0002 | - |
|
477 |
+
| 0.4425 | 15750 | 0.0002 | - |
|
478 |
+
| 0.4439 | 15800 | 0.0003 | - |
|
479 |
+
| 0.4453 | 15850 | 0.0001 | - |
|
480 |
+
| 0.4467 | 15900 | 0.0003 | - |
|
481 |
+
| 0.4481 | 15950 | 0.0002 | - |
|
482 |
+
| 0.4495 | 16000 | 0.0001 | - |
|
483 |
+
| 0.4509 | 16050 | 0.0003 | - |
|
484 |
+
| 0.4523 | 16100 | 0.0003 | - |
|
485 |
+
| 0.4537 | 16150 | 0.0003 | - |
|
486 |
+
| 0.4551 | 16200 | 0.0002 | - |
|
487 |
+
| 0.4565 | 16250 | 0.0001 | - |
|
488 |
+
| 0.4579 | 16300 | 0.0001 | - |
|
489 |
+
| 0.4593 | 16350 | 0.0001 | - |
|
490 |
+
| 0.4607 | 16400 | 0.0003 | - |
|
491 |
+
| 0.4621 | 16450 | 0.0002 | - |
|
492 |
+
| 0.4635 | 16500 | 0.0002 | - |
|
493 |
+
| 0.4649 | 16550 | 0.0002 | - |
|
494 |
+
| 0.4663 | 16600 | 0.0003 | - |
|
495 |
+
| 0.4677 | 16650 | 0.0002 | - |
|
496 |
+
| 0.4692 | 16700 | 0.0003 | - |
|
497 |
+
| 0.4706 | 16750 | 0.0002 | - |
|
498 |
+
| 0.4720 | 16800 | 0.0002 | - |
|
499 |
+
| 0.4734 | 16850 | 0.0002 | - |
|
500 |
+
| 0.4748 | 16900 | 0.0002 | - |
|
501 |
+
| 0.4762 | 16950 | 0.0003 | - |
|
502 |
+
| 0.4776 | 17000 | 0.0002 | - |
|
503 |
+
| 0.4790 | 17050 | 0.0002 | - |
|
504 |
+
| 0.4804 | 17100 | 0.0003 | - |
|
505 |
+
| 0.4818 | 17150 | 0.0001 | - |
|
506 |
+
| 0.4832 | 17200 | 0.0002 | - |
|
507 |
+
| 0.4846 | 17250 | 0.0002 | - |
|
508 |
+
| 0.4860 | 17300 | 0.0002 | - |
|
509 |
+
| 0.4874 | 17350 | 0.0001 | - |
|
510 |
+
| 0.4888 | 17400 | 0.0002 | - |
|
511 |
+
| 0.4902 | 17450 | 0.0002 | - |
|
512 |
+
| 0.4916 | 17500 | 0.0002 | - |
|
513 |
+
| 0.4930 | 17550 | 0.0002 | - |
|
514 |
+
| 0.4944 | 17600 | 0.0002 | - |
|
515 |
+
| 0.4958 | 17650 | 0.0003 | - |
|
516 |
+
| 0.4972 | 17700 | 0.0003 | - |
|
517 |
+
| 0.4987 | 17750 | 0.0002 | - |
|
518 |
+
| 0.5001 | 17800 | 0.0001 | - |
|
519 |
+
| 0.5015 | 17850 | 0.0002 | - |
|
520 |
+
| 0.5029 | 17900 | 0.0003 | - |
|
521 |
+
| 0.5043 | 17950 | 0.0002 | - |
|
522 |
+
| 0.5057 | 18000 | 0.0001 | - |
|
523 |
+
| 0.5071 | 18050 | 0.0003 | - |
|
524 |
+
| 0.5085 | 18100 | 0.0004 | - |
|
525 |
+
| 0.5099 | 18150 | 0.0002 | - |
|
526 |
+
| 0.5113 | 18200 | 0.0002 | - |
|
527 |
+
| 0.5127 | 18250 | 0.0002 | - |
|
528 |
+
| 0.5141 | 18300 | 0.0002 | - |
|
529 |
+
| 0.5155 | 18350 | 0.0002 | - |
|
530 |
+
| 0.5169 | 18400 | 0.0001 | - |
|
531 |
+
| 0.5183 | 18450 | 0.0001 | - |
|
532 |
+
| 0.5197 | 18500 | 0.0002 | - |
|
533 |
+
| 0.5211 | 18550 | 0.0002 | - |
|
534 |
+
| 0.5225 | 18600 | 0.0618 | - |
|
535 |
+
| 0.5239 | 18650 | 0.0003 | - |
|
536 |
+
| 0.5253 | 18700 | 0.0003 | - |
|
537 |
+
| 0.5267 | 18750 | 0.0002 | - |
|
538 |
+
| 0.5281 | 18800 | 0.0002 | - |
|
539 |
+
| 0.5296 | 18850 | 0.0002 | - |
|
540 |
+
| 0.5310 | 18900 | 0.0001 | - |
|
541 |
+
| 0.5324 | 18950 | 0.0002 | - |
|
542 |
+
| 0.5338 | 19000 | 0.0002 | - |
|
543 |
+
| 0.5352 | 19050 | 0.0003 | - |
|
544 |
+
| 0.5366 | 19100 | 0.0002 | - |
|
545 |
+
| 0.5380 | 19150 | 0.0002 | - |
|
546 |
+
| 0.5394 | 19200 | 0.0001 | - |
|
547 |
+
| 0.5408 | 19250 | 0.0003 | - |
|
548 |
+
| 0.5422 | 19300 | 0.0003 | - |
|
549 |
+
| 0.5436 | 19350 | 0.0002 | - |
|
550 |
+
| 0.5450 | 19400 | 0.0002 | - |
|
551 |
+
| 0.5464 | 19450 | 0.0002 | - |
|
552 |
+
| 0.5478 | 19500 | 0.0002 | - |
|
553 |
+
| 0.5492 | 19550 | 0.0002 | - |
|
554 |
+
| 0.5506 | 19600 | 0.0001 | - |
|
555 |
+
| 0.5520 | 19650 | 0.0002 | - |
|
556 |
+
| 0.5534 | 19700 | 0.0003 | - |
|
557 |
+
| 0.5548 | 19750 | 0.0002 | - |
|
558 |
+
| 0.5562 | 19800 | 0.0003 | - |
|
559 |
+
| 0.5576 | 19850 | 0.0002 | - |
|
560 |
+
| 0.5591 | 19900 | 0.0001 | - |
|
561 |
+
| 0.5605 | 19950 | 0.0001 | - |
|
562 |
+
| 0.5619 | 20000 | 0.0001 | - |
|
563 |
+
| 0.5633 | 20050 | 0.0002 | - |
|
564 |
+
| 0.5647 | 20100 | 0.0002 | - |
|
565 |
+
| 0.5661 | 20150 | 0.0002 | - |
|
566 |
+
| 0.5675 | 20200 | 0.0002 | - |
|
567 |
+
| 0.5689 | 20250 | 0.0002 | - |
|
568 |
+
| 0.5703 | 20300 | 0.0002 | - |
|
569 |
+
| 0.5717 | 20350 | 0.0001 | - |
|
570 |
+
| 0.5731 | 20400 | 0.0001 | - |
|
571 |
+
| 0.5745 | 20450 | 0.0002 | - |
|
572 |
+
| 0.5759 | 20500 | 0.0002 | - |
|
573 |
+
| 0.5773 | 20550 | 0.0001 | - |
|
574 |
+
| 0.5787 | 20600 | 0.0001 | - |
|
575 |
+
| 0.5801 | 20650 | 0.0002 | - |
|
576 |
+
| 0.5815 | 20700 | 0.0001 | - |
|
577 |
+
| 0.5829 | 20750 | 0.0002 | - |
|
578 |
+
| 0.5843 | 20800 | 0.0001 | - |
|
579 |
+
| 0.5857 | 20850 | 0.0002 | - |
|
580 |
+
| 0.5871 | 20900 | 0.0002 | - |
|
581 |
+
| 0.5885 | 20950 | 0.0001 | - |
|
582 |
+
| 0.5900 | 21000 | 0.0001 | - |
|
583 |
+
| 0.5914 | 21050 | 0.0001 | - |
|
584 |
+
| 0.5928 | 21100 | 0.0002 | - |
|
585 |
+
| 0.5942 | 21150 | 0.0002 | - |
|
586 |
+
| 0.5956 | 21200 | 0.0001 | - |
|
587 |
+
| 0.5970 | 21250 | 0.0002 | - |
|
588 |
+
| 0.5984 | 21300 | 0.0001 | - |
|
589 |
+
| 0.5998 | 21350 | 0.0002 | - |
|
590 |
+
| 0.6012 | 21400 | 0.0002 | - |
|
591 |
+
| 0.6026 | 21450 | 0.0002 | - |
|
592 |
+
| 0.6040 | 21500 | 0.0003 | - |
|
593 |
+
| 0.6054 | 21550 | 0.0002 | - |
|
594 |
+
| 0.6068 | 21600 | 0.0002 | - |
|
595 |
+
| 0.6082 | 21650 | 0.0003 | - |
|
596 |
+
| 0.6096 | 21700 | 0.0002 | - |
|
597 |
+
| 0.6110 | 21750 | 0.0001 | - |
|
598 |
+
| 0.6124 | 21800 | 0.0003 | - |
|
599 |
+
| 0.6138 | 21850 | 0.0001 | - |
|
600 |
+
| 0.6152 | 21900 | 0.0002 | - |
|
601 |
+
| 0.6166 | 21950 | 0.0001 | - |
|
602 |
+
| 0.6180 | 22000 | 0.0002 | - |
|
603 |
+
| 0.6195 | 22050 | 0.0002 | - |
|
604 |
+
| 0.6209 | 22100 | 0.0001 | - |
|
605 |
+
| 0.6223 | 22150 | 0.0002 | - |
|
606 |
+
| 0.6237 | 22200 | 0.0001 | - |
|
607 |
+
| 0.6251 | 22250 | 0.0002 | - |
|
608 |
+
| 0.6265 | 22300 | 0.0002 | - |
|
609 |
+
| 0.6279 | 22350 | 0.0001 | - |
|
610 |
+
| 0.6293 | 22400 | 0.0002 | - |
|
611 |
+
| 0.6307 | 22450 | 0.0003 | - |
|
612 |
+
| 0.6321 | 22500 | 0.0001 | - |
|
613 |
+
| 0.6335 | 22550 | 0.0002 | - |
|
614 |
+
| 0.6349 | 22600 | 0.0001 | - |
|
615 |
+
| 0.6363 | 22650 | 0.0002 | - |
|
616 |
+
| 0.6377 | 22700 | 0.0002 | - |
|
617 |
+
| 0.6391 | 22750 | 0.0001 | - |
|
618 |
+
| 0.6405 | 22800 | 0.0002 | - |
|
619 |
+
| 0.6419 | 22850 | 0.0002 | - |
|
620 |
+
| 0.6433 | 22900 | 0.0002 | - |
|
621 |
+
| 0.6447 | 22950 | 0.0002 | - |
|
622 |
+
| 0.6461 | 23000 | 0.0003 | - |
|
623 |
+
| 0.6475 | 23050 | 0.0002 | - |
|
624 |
+
| 0.6489 | 23100 | 0.0001 | - |
|
625 |
+
| 0.6504 | 23150 | 0.0002 | - |
|
626 |
+
| 0.6518 | 23200 | 0.0001 | - |
|
627 |
+
| 0.6532 | 23250 | 0.0002 | - |
|
628 |
+
| 0.6546 | 23300 | 0.0001 | - |
|
629 |
+
| 0.6560 | 23350 | 0.0002 | - |
|
630 |
+
| 0.6574 | 23400 | 0.0003 | - |
|
631 |
+
| 0.6588 | 23450 | 0.0002 | - |
|
632 |
+
| 0.6602 | 23500 | 0.0002 | - |
|
633 |
+
| 0.6616 | 23550 | 0.0001 | - |
|
634 |
+
| 0.6630 | 23600 | 0.0003 | - |
|
635 |
+
| 0.6644 | 23650 | 0.0002 | - |
|
636 |
+
| 0.6658 | 23700 | 0.0001 | - |
|
637 |
+
| 0.6672 | 23750 | 0.0002 | - |
|
638 |
+
| 0.6686 | 23800 | 0.0001 | - |
|
639 |
+
| 0.6700 | 23850 | 0.0001 | - |
|
640 |
+
| 0.6714 | 23900 | 0.0002 | - |
|
641 |
+
| 0.6728 | 23950 | 0.0002 | - |
|
642 |
+
| 0.6742 | 24000 | 0.0002 | - |
|
643 |
+
| 0.6756 | 24050 | 0.0002 | - |
|
644 |
+
| 0.6770 | 24100 | 0.0001 | - |
|
645 |
+
| 0.6784 | 24150 | 0.0002 | - |
|
646 |
+
| 0.6799 | 24200 | 0.0002 | - |
|
647 |
+
| 0.6813 | 24250 | 0.0002 | - |
|
648 |
+
| 0.6827 | 24300 | 0.0001 | - |
|
649 |
+
| 0.6841 | 24350 | 0.0002 | - |
|
650 |
+
| 0.6855 | 24400 | 0.0002 | - |
|
651 |
+
| 0.6869 | 24450 | 0.0001 | - |
|
652 |
+
| 0.6883 | 24500 | 0.0001 | - |
|
653 |
+
| 0.6897 | 24550 | 0.0002 | - |
|
654 |
+
| 0.6911 | 24600 | 0.0001 | - |
|
655 |
+
| 0.6925 | 24650 | 0.0002 | - |
|
656 |
+
| 0.6939 | 24700 | 0.0001 | - |
|
657 |
+
| 0.6953 | 24750 | 0.0003 | - |
|
658 |
+
| 0.6967 | 24800 | 0.0001 | - |
|
659 |
+
| 0.6981 | 24850 | 0.0002 | - |
|
660 |
+
| 0.6995 | 24900 | 0.0001 | - |
|
661 |
+
| 0.7009 | 24950 | 0.0001 | - |
|
662 |
+
| 0.7023 | 25000 | 0.0002 | - |
|
663 |
+
| 0.7037 | 25050 | 0.0001 | - |
|
664 |
+
| 0.7051 | 25100 | 0.0002 | - |
|
665 |
+
| 0.7065 | 25150 | 0.0001 | - |
|
666 |
+
| 0.7079 | 25200 | 0.0002 | - |
|
667 |
+
| 0.7093 | 25250 | 0.0002 | - |
|
668 |
+
| 0.7108 | 25300 | 0.0001 | - |
|
669 |
+
| 0.7122 | 25350 | 0.0002 | - |
|
670 |
+
| 0.7136 | 25400 | 0.0001 | - |
|
671 |
+
| 0.7150 | 25450 | 0.0001 | - |
|
672 |
+
| 0.7164 | 25500 | 0.0001 | - |
|
673 |
+
| 0.7178 | 25550 | 0.0001 | - |
|
674 |
+
| 0.7192 | 25600 | 0.0002 | - |
|
675 |
+
| 0.7206 | 25650 | 0.0002 | - |
|
676 |
+
| 0.7220 | 25700 | 0.0001 | - |
|
677 |
+
| 0.7234 | 25750 | 0.0001 | - |
|
678 |
+
| 0.7248 | 25800 | 0.0001 | - |
|
679 |
+
| 0.7262 | 25850 | 0.0002 | - |
|
680 |
+
| 0.7276 | 25900 | 0.0002 | - |
|
681 |
+
| 0.7290 | 25950 | 0.0001 | - |
|
682 |
+
| 0.7304 | 26000 | 0.0001 | - |
|
683 |
+
| 0.7318 | 26050 | 0.0002 | - |
|
684 |
+
| 0.7332 | 26100 | 0.0001 | - |
|
685 |
+
| 0.7346 | 26150 | 0.0001 | - |
|
686 |
+
| 0.7360 | 26200 | 0.0001 | - |
|
687 |
+
| 0.7374 | 26250 | 0.0001 | - |
|
688 |
+
| 0.7388 | 26300 | 0.0001 | - |
|
689 |
+
| 0.7403 | 26350 | 0.0002 | - |
|
690 |
+
| 0.7417 | 26400 | 0.0002 | - |
|
691 |
+
| 0.7431 | 26450 | 0.0001 | - |
|
692 |
+
| 0.7445 | 26500 | 0.0002 | - |
|
693 |
+
| 0.7459 | 26550 | 0.0001 | - |
|
694 |
+
| 0.7473 | 26600 | 0.0001 | - |
|
695 |
+
| 0.7487 | 26650 | 0.0002 | - |
|
696 |
+
| 0.7501 | 26700 | 0.0001 | - |
|
697 |
+
| 0.7515 | 26750 | 0.0001 | - |
|
698 |
+
| 0.7529 | 26800 | 0.0001 | - |
|
699 |
+
| 0.7543 | 26850 | 0.0001 | - |
|
700 |
+
| 0.7557 | 26900 | 0.0001 | - |
|
701 |
+
| 0.7571 | 26950 | 0.0001 | - |
|
702 |
+
| 0.7585 | 27000 | 0.0002 | - |
|
703 |
+
| 0.7599 | 27050 | 0.0001 | - |
|
704 |
+
| 0.7613 | 27100 | 0.0002 | - |
|
705 |
+
| 0.7627 | 27150 | 0.0002 | - |
|
706 |
+
| 0.7641 | 27200 | 0.0001 | - |
|
707 |
+
| 0.7655 | 27250 | 0.0002 | - |
|
708 |
+
| 0.7669 | 27300 | 0.0001 | - |
|
709 |
+
| 0.7683 | 27350 | 0.0002 | - |
|
710 |
+
| 0.7697 | 27400 | 0.0001 | - |
|
711 |
+
| 0.7712 | 27450 | 0.0002 | - |
|
712 |
+
| 0.7726 | 27500 | 0.0001 | - |
|
713 |
+
| 0.7740 | 27550 | 0.0001 | - |
|
714 |
+
| 0.7754 | 27600 | 0.0001 | - |
|
715 |
+
| 0.7768 | 27650 | 0.0001 | - |
|
716 |
+
| 0.7782 | 27700 | 0.0001 | - |
|
717 |
+
| 0.7796 | 27750 | 0.0001 | - |
|
718 |
+
| 0.7810 | 27800 | 0.0001 | - |
|
719 |
+
| 0.7824 | 27850 | 0.0001 | - |
|
720 |
+
| 0.7838 | 27900 | 0.0001 | - |
|
721 |
+
| 0.7852 | 27950 | 0.0001 | - |
|
722 |
+
| 0.7866 | 28000 | 0.0001 | - |
|
723 |
+
| 0.7880 | 28050 | 0.0001 | - |
|
724 |
+
| 0.7894 | 28100 | 0.0001 | - |
|
725 |
+
| 0.7908 | 28150 | 0.0001 | - |
|
726 |
+
| 0.7922 | 28200 | 0.0001 | - |
|
727 |
+
| 0.7936 | 28250 | 0.0002 | - |
|
728 |
+
| 0.7950 | 28300 | 0.0002 | - |
|
729 |
+
| 0.7964 | 28350 | 0.0001 | - |
|
730 |
+
| 0.7978 | 28400 | 0.0002 | - |
|
731 |
+
| 0.7992 | 28450 | 0.0001 | - |
|
732 |
+
| 0.8007 | 28500 | 0.0001 | - |
|
733 |
+
| 0.8021 | 28550 | 0.0001 | - |
|
734 |
+
| 0.8035 | 28600 | 0.0001 | - |
|
735 |
+
| 0.8049 | 28650 | 0.0002 | - |
|
736 |
+
| 0.8063 | 28700 | 0.0001 | - |
|
737 |
+
| 0.8077 | 28750 | 0.0002 | - |
|
738 |
+
| 0.8091 | 28800 | 0.0001 | - |
|
739 |
+
| 0.8105 | 28850 | 0.0001 | - |
|
740 |
+
| 0.8119 | 28900 | 0.0001 | - |
|
741 |
+
| 0.8133 | 28950 | 0.0002 | - |
|
742 |
+
| 0.8147 | 29000 | 0.0001 | - |
|
743 |
+
| 0.8161 | 29050 | 0.0002 | - |
|
744 |
+
| 0.8175 | 29100 | 0.0002 | - |
|
745 |
+
| 0.8189 | 29150 | 0.0002 | - |
|
746 |
+
| 0.8203 | 29200 | 0.0001 | - |
|
747 |
+
| 0.8217 | 29250 | 0.0002 | - |
|
748 |
+
| 0.8231 | 29300 | 0.0001 | - |
|
749 |
+
| 0.8245 | 29350 | 0.0001 | - |
|
750 |
+
| 0.8259 | 29400 | 0.0001 | - |
|
751 |
+
| 0.8273 | 29450 | 0.0002 | - |
|
752 |
+
| 0.8287 | 29500 | 0.0001 | - |
|
753 |
+
| 0.8301 | 29550 | 0.0002 | - |
|
754 |
+
| 0.8316 | 29600 | 0.0001 | - |
|
755 |
+
| 0.8330 | 29650 | 0.0001 | - |
|
756 |
+
| 0.8344 | 29700 | 0.0001 | - |
|
757 |
+
| 0.8358 | 29750 | 0.0001 | - |
|
758 |
+
| 0.8372 | 29800 | 0.0001 | - |
|
759 |
+
| 0.8386 | 29850 | 0.0001 | - |
|
760 |
+
| 0.8400 | 29900 | 0.0001 | - |
|
761 |
+
| 0.8414 | 29950 | 0.0002 | - |
|
762 |
+
| 0.8428 | 30000 | 0.0002 | - |
|
763 |
+
| 0.8442 | 30050 | 0.0001 | - |
|
764 |
+
| 0.8456 | 30100 | 0.0001 | - |
|
765 |
+
| 0.8470 | 30150 | 0.0001 | - |
|
766 |
+
| 0.8484 | 30200 | 0.0001 | - |
|
767 |
+
| 0.8498 | 30250 | 0.0001 | - |
|
768 |
+
| 0.8512 | 30300 | 0.0001 | - |
|
769 |
+
| 0.8526 | 30350 | 0.0001 | - |
|
770 |
+
| 0.8540 | 30400 | 0.0001 | - |
|
771 |
+
| 0.8554 | 30450 | 0.0002 | - |
|
772 |
+
| 0.8568 | 30500 | 0.0001 | - |
|
773 |
+
| 0.8582 | 30550 | 0.0001 | - |
|
774 |
+
| 0.8596 | 30600 | 0.0 | - |
|
775 |
+
| 0.8611 | 30650 | 0.0001 | - |
|
776 |
+
| 0.8625 | 30700 | 0.0002 | - |
|
777 |
+
| 0.8639 | 30750 | 0.0002 | - |
|
778 |
+
| 0.8653 | 30800 | 0.0002 | - |
|
779 |
+
| 0.8667 | 30850 | 0.0001 | - |
|
780 |
+
| 0.8681 | 30900 | 0.0002 | - |
|
781 |
+
| 0.8695 | 30950 | 0.0001 | - |
|
782 |
+
| 0.8709 | 31000 | 0.0001 | - |
|
783 |
+
| 0.8723 | 31050 | 0.0001 | - |
|
784 |
+
| 0.8737 | 31100 | 0.0002 | - |
|
785 |
+
| 0.8751 | 31150 | 0.0002 | - |
|
786 |
+
| 0.8765 | 31200 | 0.0001 | - |
|
787 |
+
| 0.8779 | 31250 | 0.0001 | - |
|
788 |
+
| 0.8793 | 31300 | 0.0001 | - |
|
789 |
+
| 0.8807 | 31350 | 0.0001 | - |
|
790 |
+
| 0.8821 | 31400 | 0.0001 | - |
|
791 |
+
| 0.8835 | 31450 | 0.0001 | - |
|
792 |
+
| 0.8849 | 31500 | 0.0001 | - |
|
793 |
+
| 0.8863 | 31550 | 0.0002 | - |
|
794 |
+
| 0.8877 | 31600 | 0.0001 | - |
|
795 |
+
| 0.8891 | 31650 | 0.0001 | - |
|
796 |
+
| 0.8905 | 31700 | 0.0002 | - |
|
797 |
+
| 0.8920 | 31750 | 0.0001 | - |
|
798 |
+
| 0.8934 | 31800 | 0.0001 | - |
|
799 |
+
| 0.8948 | 31850 | 0.0001 | - |
|
800 |
+
| 0.8962 | 31900 | 0.0003 | - |
|
801 |
+
| 0.8976 | 31950 | 0.0002 | - |
|
802 |
+
| 0.8990 | 32000 | 0.0002 | - |
|
803 |
+
| 0.9004 | 32050 | 0.0001 | - |
|
804 |
+
| 0.9018 | 32100 | 0.0001 | - |
|
805 |
+
| 0.9032 | 32150 | 0.0002 | - |
|
806 |
+
| 0.9046 | 32200 | 0.0003 | - |
|
807 |
+
| 0.9060 | 32250 | 0.0001 | - |
|
808 |
+
| 0.9074 | 32300 | 0.0002 | - |
|
809 |
+
| 0.9088 | 32350 | 0.0001 | - |
|
810 |
+
| 0.9102 | 32400 | 0.0002 | - |
|
811 |
+
| 0.9116 | 32450 | 0.0002 | - |
|
812 |
+
| 0.9130 | 32500 | 0.0001 | - |
|
813 |
+
| 0.9144 | 32550 | 0.0001 | - |
|
814 |
+
| 0.9158 | 32600 | 0.0001 | - |
|
815 |
+
| 0.9172 | 32650 | 0.0001 | - |
|
816 |
+
| 0.9186 | 32700 | 0.0001 | - |
|
817 |
+
| 0.9200 | 32750 | 0.0001 | - |
|
818 |
+
| 0.9215 | 32800 | 0.0001 | - |
|
819 |
+
| 0.9229 | 32850 | 0.0001 | - |
|
820 |
+
| 0.9243 | 32900 | 0.0001 | - |
|
821 |
+
| 0.9257 | 32950 | 0.0001 | - |
|
822 |
+
| 0.9271 | 33000 | 0.0001 | - |
|
823 |
+
| 0.9285 | 33050 | 0.0002 | - |
|
824 |
+
| 0.9299 | 33100 | 0.0001 | - |
|
825 |
+
| 0.9313 | 33150 | 0.0002 | - |
|
826 |
+
| 0.9327 | 33200 | 0.0001 | - |
|
827 |
+
| 0.9341 | 33250 | 0.0001 | - |
|
828 |
+
| 0.9355 | 33300 | 0.0002 | - |
|
829 |
+
| 0.9369 | 33350 | 0.0001 | - |
|
830 |
+
| 0.9383 | 33400 | 0.0001 | - |
|
831 |
+
| 0.9397 | 33450 | 0.0001 | - |
|
832 |
+
| 0.9411 | 33500 | 0.0001 | - |
|
833 |
+
| 0.9425 | 33550 | 0.0001 | - |
|
834 |
+
| 0.9439 | 33600 | 0.0001 | - |
|
835 |
+
| 0.9453 | 33650 | 0.0001 | - |
|
836 |
+
| 0.9467 | 33700 | 0.0002 | - |
|
837 |
+
| 0.9481 | 33750 | 0.0001 | - |
|
838 |
+
| 0.9495 | 33800 | 0.0001 | - |
|
839 |
+
| 0.9509 | 33850 | 0.0002 | - |
|
840 |
+
| 0.9524 | 33900 | 0.0001 | - |
|
841 |
+
| 0.9538 | 33950 | 0.0001 | - |
|
842 |
+
| 0.9552 | 34000 | 0.0002 | - |
|
843 |
+
| 0.9566 | 34050 | 0.0001 | - |
|
844 |
+
| 0.9580 | 34100 | 0.0001 | - |
|
845 |
+
| 0.9594 | 34150 | 0.0001 | - |
|
846 |
+
| 0.9608 | 34200 | 0.0002 | - |
|
847 |
+
| 0.9622 | 34250 | 0.0001 | - |
|
848 |
+
| 0.9636 | 34300 | 0.0001 | - |
|
849 |
+
| 0.9650 | 34350 | 0.0001 | - |
|
850 |
+
| 0.9664 | 34400 | 0.0001 | - |
|
851 |
+
| 0.9678 | 34450 | 0.0003 | - |
|
852 |
+
| 0.9692 | 34500 | 0.0001 | - |
|
853 |
+
| 0.9706 | 34550 | 0.0001 | - |
|
854 |
+
| 0.9720 | 34600 | 0.0001 | - |
|
855 |
+
| 0.9734 | 34650 | 0.0001 | - |
|
856 |
+
| 0.9748 | 34700 | 0.0001 | - |
|
857 |
+
| 0.9762 | 34750 | 0.0001 | - |
|
858 |
+
| 0.9776 | 34800 | 0.0002 | - |
|
859 |
+
| 0.9790 | 34850 | 0.0001 | - |
|
860 |
+
| 0.9804 | 34900 | 0.0002 | - |
|
861 |
+
| 0.9819 | 34950 | 0.0001 | - |
|
862 |
+
| 0.9833 | 35000 | 0.0002 | - |
|
863 |
+
| 0.9847 | 35050 | 0.0001 | - |
|
864 |
+
| 0.9861 | 35100 | 0.0001 | - |
|
865 |
+
| 0.9875 | 35150 | 0.0001 | - |
|
866 |
+
| 0.9889 | 35200 | 0.0001 | - |
|
867 |
+
| 0.9903 | 35250 | 0.0001 | - |
|
868 |
+
| 0.9917 | 35300 | 0.0001 | - |
|
869 |
+
| 0.9931 | 35350 | 0.0001 | - |
|
870 |
+
| 0.9945 | 35400 | 0.0001 | - |
|
871 |
+
| 0.9959 | 35450 | 0.0001 | - |
|
872 |
+
| 0.9973 | 35500 | 0.0001 | - |
|
873 |
+
| 0.9987 | 35550 | 0.0001 | - |
|
874 |
+
| **1.0** | **35596** | **-** | **0.0121** |
|
875 |
+
|
876 |
+
* The bold row denotes the saved checkpoint.
|
877 |
+
### Framework Versions
|
878 |
+
- Python: 3.11.9
|
879 |
+
- SetFit: 1.0.3
|
880 |
+
- Sentence Transformers: 2.7.0
|
881 |
+
- Transformers: 4.42.4
|
882 |
+
- PyTorch: 2.4.0+cu121
|
883 |
+
- Datasets: 2.21.0
|
884 |
+
- Tokenizers: 0.19.1
|
885 |
+
|
886 |
+
## Citation
|
887 |
+
|
888 |
+
### BibTeX
|
889 |
+
```bibtex
|
890 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
891 |
+
doi = {10.48550/ARXIV.2209.11055},
|
892 |
+
url = {https://arxiv.org/abs/2209.11055},
|
893 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
894 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
895 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
896 |
+
publisher = {arXiv},
|
897 |
+
year = {2022},
|
898 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
899 |
+
}
|
900 |
+
```
|
901 |
+
|
902 |
+
<!--
|
903 |
+
## Glossary
|
904 |
+
|
905 |
+
*Clearly define terms in order to be accessible across audiences.*
|
906 |
+
-->
|
907 |
+
|
908 |
+
<!--
|
909 |
+
## Model Card Authors
|
910 |
+
|
911 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
912 |
+
-->
|
913 |
+
|
914 |
+
<!--
|
915 |
+
## Model Card Contact
|
916 |
+
|
917 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
918 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_35596",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.42.4",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"Tablejoin",
|
5 |
+
"Rejection",
|
6 |
+
"Aggregation",
|
7 |
+
"Lookup",
|
8 |
+
"Generalreply",
|
9 |
+
"Viewtables",
|
10 |
+
"Lookup_1"
|
11 |
+
]
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:963643c11d2bdf395924eb0db102d84655f26d2172ccf7c5340f14bbd42f86fd
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49f6961abbc8c46be7c8558d37e1158b2511094ebae01b41a79a73dbddfa9469
|
3 |
+
size 22735
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|