nazhan commited on
Commit
1fbc451
·
verified ·
1 Parent(s): 1e70472

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,909 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: you're very lucky.
14
+ - text: Show me operating cash flow trends.
15
+ - text: Join data_asset_kpi_is and data_asset_kpi_cf tables.
16
+ - text: Can I have max EBIT_Margin?
17
+ - text: I'm not inclined to generate further data sets.
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with BAAI/bge-large-en-v1.5
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9829059829059829
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with BAAI/bge-large-en-v1.5
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | Lookup_1 | <ul><li>'Analyze product category revenue impact.'</li><li>'Analyze Product-wise Financial Performance Metrics.'</li><li>'Get M&A deal size by company.'</li></ul> |
66
+ | Aggregation | <ul><li>'Group the products by color and find the average price for each color.'</li><li>'Get me count Product.'</li><li>'Show me forecast accuracy and group by version.'</li></ul> |
67
+ | Lookup | <ul><li>'What are the products with a price below 20?'</li><li>'Can you get me the products that are out of stock?'</li><li>'Get me the list of employees who joined the company after January 2023.'</li></ul> |
68
+ | Viewtables | <ul><li>'What are the different types of tables that can be found within the starhub_data_asset database?'</li><li>'What is the complete list of tables in the starhub_data_asset database that can be accessed without needing to perform any table joining operations?'</li><li>'What is the list of tables that a new user should familiarize themselves with when accessing the starhub_data_asset database?'</li></ul> |
69
+ | Tablejoin | <ul><li>'Can you join the Products and Orders tables to track revenue by product category?'</li><li>'Could you combine table data from Orders and Products to identify which products were ordered most frequently?'</li><li>'Show me a join of key performance metrics and cash flow tables.'</li></ul> |
70
+ | Generalreply | <ul><li>"Oh, I'm a big fan of indie rock. What about you? What's your favorite type of music?"</li><li>'It was pretty good! How about yours?'</li><li>"Oh, that's a tough question! I have a few favorites, but if I had to pick just one, it would be The Shawshank Redemption. What about you, what's your favorite movie?"</li></ul> |
71
+ | Rejection | <ul><li>"I don't need to filter this data set."</li><li>"Let's not generate more data entries."</li><li>"Please don't filter the list."</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.9829 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-9-2nd-1-epoch")
97
+ # Run inference
98
+ preds = model("you're very lucky.")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 2 | 8.8397 | 53 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:-------------|:----------------------|
134
+ | Tablejoin | 129 |
135
+ | Rejection | 69 |
136
+ | Aggregation | 282 |
137
+ | Lookup | 64 |
138
+ | Generalreply | 69 |
139
+ | Viewtables | 76 |
140
+ | Lookup_1 | 147 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (16, 16)
144
+ - num_epochs: (1, 1)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - body_learning_rate: (2e-05, 1e-05)
148
+ - head_learning_rate: 0.01
149
+ - loss: CosineSimilarityLoss
150
+ - distance_metric: cosine_distance
151
+ - margin: 0.25
152
+ - end_to_end: False
153
+ - use_amp: False
154
+ - warmup_proportion: 0.1
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: True
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:---------:|:-------------:|:---------------:|
162
+ | 0.0000 | 1 | 0.23 | - |
163
+ | 0.0014 | 50 | 0.196 | - |
164
+ | 0.0028 | 100 | 0.1679 | - |
165
+ | 0.0043 | 150 | 0.156 | - |
166
+ | 0.0057 | 200 | 0.2 | - |
167
+ | 0.0071 | 250 | 0.0765 | - |
168
+ | 0.0085 | 300 | 0.167 | - |
169
+ | 0.0100 | 350 | 0.1154 | - |
170
+ | 0.0114 | 400 | 0.0625 | - |
171
+ | 0.0128 | 450 | 0.0666 | - |
172
+ | 0.0142 | 500 | 0.0515 | - |
173
+ | 0.0157 | 550 | 0.0178 | - |
174
+ | 0.0171 | 600 | 0.0068 | - |
175
+ | 0.0185 | 650 | 0.0174 | - |
176
+ | 0.0199 | 700 | 0.0136 | - |
177
+ | 0.0214 | 750 | 0.0066 | - |
178
+ | 0.0228 | 800 | 0.0052 | - |
179
+ | 0.0242 | 850 | 0.0045 | - |
180
+ | 0.0256 | 900 | 0.003 | - |
181
+ | 0.0271 | 950 | 0.0031 | - |
182
+ | 0.0285 | 1000 | 0.0035 | - |
183
+ | 0.0299 | 1050 | 0.0032 | - |
184
+ | 0.0313 | 1100 | 0.0031 | - |
185
+ | 0.0328 | 1150 | 0.0029 | - |
186
+ | 0.0342 | 1200 | 0.0023 | - |
187
+ | 0.0356 | 1250 | 0.0012 | - |
188
+ | 0.0370 | 1300 | 0.0025 | - |
189
+ | 0.0385 | 1350 | 0.0019 | - |
190
+ | 0.0399 | 1400 | 0.0023 | - |
191
+ | 0.0413 | 1450 | 0.0016 | - |
192
+ | 0.0427 | 1500 | 0.0018 | - |
193
+ | 0.0441 | 1550 | 0.0019 | - |
194
+ | 0.0456 | 1600 | 0.0012 | - |
195
+ | 0.0470 | 1650 | 0.0012 | - |
196
+ | 0.0484 | 1700 | 0.0013 | - |
197
+ | 0.0498 | 1750 | 0.0011 | - |
198
+ | 0.0513 | 1800 | 0.001 | - |
199
+ | 0.0527 | 1850 | 0.0013 | - |
200
+ | 0.0541 | 1900 | 0.0014 | - |
201
+ | 0.0555 | 1950 | 0.0008 | - |
202
+ | 0.0570 | 2000 | 0.0009 | - |
203
+ | 0.0584 | 2050 | 0.0009 | - |
204
+ | 0.0598 | 2100 | 0.0009 | - |
205
+ | 0.0612 | 2150 | 0.0012 | - |
206
+ | 0.0627 | 2200 | 0.0008 | - |
207
+ | 0.0641 | 2250 | 0.0011 | - |
208
+ | 0.0655 | 2300 | 0.0006 | - |
209
+ | 0.0669 | 2350 | 0.0011 | - |
210
+ | 0.0684 | 2400 | 0.0007 | - |
211
+ | 0.0698 | 2450 | 0.0009 | - |
212
+ | 0.0712 | 2500 | 0.0007 | - |
213
+ | 0.0726 | 2550 | 0.0005 | - |
214
+ | 0.0741 | 2600 | 0.0006 | - |
215
+ | 0.0755 | 2650 | 0.0007 | - |
216
+ | 0.0769 | 2700 | 0.0008 | - |
217
+ | 0.0783 | 2750 | 0.0007 | - |
218
+ | 0.0798 | 2800 | 0.0007 | - |
219
+ | 0.0812 | 2850 | 0.0007 | - |
220
+ | 0.0826 | 2900 | 0.0008 | - |
221
+ | 0.0840 | 2950 | 0.0006 | - |
222
+ | 0.0855 | 3000 | 0.0006 | - |
223
+ | 0.0869 | 3050 | 0.0006 | - |
224
+ | 0.0883 | 3100 | 0.0005 | - |
225
+ | 0.0897 | 3150 | 0.0007 | - |
226
+ | 0.0911 | 3200 | 0.0005 | - |
227
+ | 0.0926 | 3250 | 0.0007 | - |
228
+ | 0.0940 | 3300 | 0.0007 | - |
229
+ | 0.0954 | 3350 | 0.0006 | - |
230
+ | 0.0968 | 3400 | 0.0007 | - |
231
+ | 0.0983 | 3450 | 0.0005 | - |
232
+ | 0.0997 | 3500 | 0.0005 | - |
233
+ | 0.1011 | 3550 | 0.0005 | - |
234
+ | 0.1025 | 3600 | 0.0004 | - |
235
+ | 0.1040 | 3650 | 0.0003 | - |
236
+ | 0.1054 | 3700 | 0.0005 | - |
237
+ | 0.1068 | 3750 | 0.0004 | - |
238
+ | 0.1082 | 3800 | 0.0005 | - |
239
+ | 0.1097 | 3850 | 0.0004 | - |
240
+ | 0.1111 | 3900 | 0.0004 | - |
241
+ | 0.1125 | 3950 | 0.0003 | - |
242
+ | 0.1139 | 4000 | 0.0004 | - |
243
+ | 0.1154 | 4050 | 0.0003 | - |
244
+ | 0.1168 | 4100 | 0.1163 | - |
245
+ | 0.1182 | 4150 | 0.0054 | - |
246
+ | 0.1196 | 4200 | 0.0317 | - |
247
+ | 0.1211 | 4250 | 0.0009 | - |
248
+ | 0.1225 | 4300 | 0.0005 | - |
249
+ | 0.1239 | 4350 | 0.0008 | - |
250
+ | 0.1253 | 4400 | 0.0007 | - |
251
+ | 0.1268 | 4450 | 0.0004 | - |
252
+ | 0.1282 | 4500 | 0.0006 | - |
253
+ | 0.1296 | 4550 | 0.0004 | - |
254
+ | 0.1310 | 4600 | 0.0003 | - |
255
+ | 0.1324 | 4650 | 0.0004 | - |
256
+ | 0.1339 | 4700 | 0.0005 | - |
257
+ | 0.1353 | 4750 | 0.0003 | - |
258
+ | 0.1367 | 4800 | 0.0004 | - |
259
+ | 0.1381 | 4850 | 0.0004 | - |
260
+ | 0.1396 | 4900 | 0.0002 | - |
261
+ | 0.1410 | 4950 | 0.0005 | - |
262
+ | 0.1424 | 5000 | 0.0003 | - |
263
+ | 0.1438 | 5050 | 0.0004 | - |
264
+ | 0.1453 | 5100 | 0.0004 | - |
265
+ | 0.1467 | 5150 | 0.0003 | - |
266
+ | 0.1481 | 5200 | 0.0003 | - |
267
+ | 0.1495 | 5250 | 0.0003 | - |
268
+ | 0.1510 | 5300 | 0.0005 | - |
269
+ | 0.1524 | 5350 | 0.0004 | - |
270
+ | 0.1538 | 5400 | 0.0002 | - |
271
+ | 0.1552 | 5450 | 0.0003 | - |
272
+ | 0.1567 | 5500 | 0.0003 | - |
273
+ | 0.1581 | 5550 | 0.0002 | - |
274
+ | 0.1595 | 5600 | 0.0002 | - |
275
+ | 0.1609 | 5650 | 0.0003 | - |
276
+ | 0.1624 | 5700 | 0.0003 | - |
277
+ | 0.1638 | 5750 | 0.0003 | - |
278
+ | 0.1652 | 5800 | 0.0002 | - |
279
+ | 0.1666 | 5850 | 0.0003 | - |
280
+ | 0.1681 | 5900 | 0.0003 | - |
281
+ | 0.1695 | 5950 | 0.0003 | - |
282
+ | 0.1709 | 6000 | 0.0002 | - |
283
+ | 0.1723 | 6050 | 0.0002 | - |
284
+ | 0.1737 | 6100 | 0.0002 | - |
285
+ | 0.1752 | 6150 | 0.0002 | - |
286
+ | 0.1766 | 6200 | 0.0003 | - |
287
+ | 0.1780 | 6250 | 0.0002 | - |
288
+ | 0.1794 | 6300 | 0.0003 | - |
289
+ | 0.1809 | 6350 | 0.0002 | - |
290
+ | 0.1823 | 6400 | 0.0003 | - |
291
+ | 0.1837 | 6450 | 0.0003 | - |
292
+ | 0.1851 | 6500 | 0.0002 | - |
293
+ | 0.1866 | 6550 | 0.0002 | - |
294
+ | 0.1880 | 6600 | 0.0004 | - |
295
+ | 0.1894 | 6650 | 0.0002 | - |
296
+ | 0.1908 | 6700 | 0.0002 | - |
297
+ | 0.1923 | 6750 | 0.0002 | - |
298
+ | 0.1937 | 6800 | 0.0002 | - |
299
+ | 0.1951 | 6850 | 0.0002 | - |
300
+ | 0.1965 | 6900 | 0.0002 | - |
301
+ | 0.1980 | 6950 | 0.0002 | - |
302
+ | 0.1994 | 7000 | 0.0002 | - |
303
+ | 0.2008 | 7050 | 0.0002 | - |
304
+ | 0.2022 | 7100 | 0.0002 | - |
305
+ | 0.2037 | 7150 | 0.0003 | - |
306
+ | 0.2051 | 7200 | 0.0002 | - |
307
+ | 0.2065 | 7250 | 0.0002 | - |
308
+ | 0.2079 | 7300 | 0.0002 | - |
309
+ | 0.2094 | 7350 | 0.0002 | - |
310
+ | 0.2108 | 7400 | 0.0002 | - |
311
+ | 0.2122 | 7450 | 0.0002 | - |
312
+ | 0.2136 | 7500 | 0.0002 | - |
313
+ | 0.2151 | 7550 | 0.0002 | - |
314
+ | 0.2165 | 7600 | 0.0002 | - |
315
+ | 0.2179 | 7650 | 0.0002 | - |
316
+ | 0.2193 | 7700 | 0.0002 | - |
317
+ | 0.2207 | 7750 | 0.0002 | - |
318
+ | 0.2222 | 7800 | 0.0001 | - |
319
+ | 0.2236 | 7850 | 0.0002 | - |
320
+ | 0.2250 | 7900 | 0.0002 | - |
321
+ | 0.2264 | 7950 | 0.0002 | - |
322
+ | 0.2279 | 8000 | 0.0002 | - |
323
+ | 0.2293 | 8050 | 0.0002 | - |
324
+ | 0.2307 | 8100 | 0.0002 | - |
325
+ | 0.2321 | 8150 | 0.0002 | - |
326
+ | 0.2336 | 8200 | 0.0002 | - |
327
+ | 0.2350 | 8250 | 0.0004 | - |
328
+ | 0.2364 | 8300 | 0.0001 | - |
329
+ | 0.2378 | 8350 | 0.0002 | - |
330
+ | 0.2393 | 8400 | 0.0001 | - |
331
+ | 0.2407 | 8450 | 0.0002 | - |
332
+ | 0.2421 | 8500 | 0.0001 | - |
333
+ | 0.2435 | 8550 | 0.0002 | - |
334
+ | 0.2450 | 8600 | 0.0002 | - |
335
+ | 0.2464 | 8650 | 0.0002 | - |
336
+ | 0.2478 | 8700 | 0.0001 | - |
337
+ | 0.2492 | 8750 | 0.0001 | - |
338
+ | 0.2507 | 8800 | 0.0001 | - |
339
+ | 0.2521 | 8850 | 0.0002 | - |
340
+ | 0.2535 | 8900 | 0.0002 | - |
341
+ | 0.2549 | 8950 | 0.0002 | - |
342
+ | 0.2564 | 9000 | 0.0002 | - |
343
+ | 0.2578 | 9050 | 0.0001 | - |
344
+ | 0.2592 | 9100 | 0.0001 | - |
345
+ | 0.2606 | 9150 | 0.0003 | - |
346
+ | 0.2620 | 9200 | 0.0001 | - |
347
+ | 0.2635 | 9250 | 0.0001 | - |
348
+ | 0.2649 | 9300 | 0.0002 | - |
349
+ | 0.2663 | 9350 | 0.0001 | - |
350
+ | 0.2677 | 9400 | 0.0001 | - |
351
+ | 0.2692 | 9450 | 0.0001 | - |
352
+ | 0.2706 | 9500 | 0.0002 | - |
353
+ | 0.2720 | 9550 | 0.0002 | - |
354
+ | 0.2734 | 9600 | 0.0002 | - |
355
+ | 0.2749 | 9650 | 0.0001 | - |
356
+ | 0.2763 | 9700 | 0.0002 | - |
357
+ | 0.2777 | 9750 | 0.0001 | - |
358
+ | 0.2791 | 9800 | 0.0001 | - |
359
+ | 0.2806 | 9850 | 0.0001 | - |
360
+ | 0.2820 | 9900 | 0.0002 | - |
361
+ | 0.2834 | 9950 | 0.0002 | - |
362
+ | 0.2848 | 10000 | 0.0001 | - |
363
+ | 0.2863 | 10050 | 0.0001 | - |
364
+ | 0.2877 | 10100 | 0.0001 | - |
365
+ | 0.2891 | 10150 | 0.0002 | - |
366
+ | 0.2905 | 10200 | 0.0001 | - |
367
+ | 0.2920 | 10250 | 0.0002 | - |
368
+ | 0.2934 | 10300 | 0.0001 | - |
369
+ | 0.2948 | 10350 | 0.0002 | - |
370
+ | 0.2962 | 10400 | 0.0001 | - |
371
+ | 0.2977 | 10450 | 0.0001 | - |
372
+ | 0.2991 | 10500 | 0.0001 | - |
373
+ | 0.3005 | 10550 | 0.0001 | - |
374
+ | 0.3019 | 10600 | 0.0001 | - |
375
+ | 0.3033 | 10650 | 0.0001 | - |
376
+ | 0.3048 | 10700 | 0.0001 | - |
377
+ | 0.3062 | 10750 | 0.0001 | - |
378
+ | 0.3076 | 10800 | 0.0001 | - |
379
+ | 0.3090 | 10850 | 0.0001 | - |
380
+ | 0.3105 | 10900 | 0.0001 | - |
381
+ | 0.3119 | 10950 | 0.0001 | - |
382
+ | 0.3133 | 11000 | 0.0001 | - |
383
+ | 0.3147 | 11050 | 0.0001 | - |
384
+ | 0.3162 | 11100 | 0.0001 | - |
385
+ | 0.3176 | 11150 | 0.0001 | - |
386
+ | 0.3190 | 11200 | 0.0001 | - |
387
+ | 0.3204 | 11250 | 0.0001 | - |
388
+ | 0.3219 | 11300 | 0.0001 | - |
389
+ | 0.3233 | 11350 | 0.0001 | - |
390
+ | 0.3247 | 11400 | 0.0002 | - |
391
+ | 0.3261 | 11450 | 0.0001 | - |
392
+ | 0.3276 | 11500 | 0.0001 | - |
393
+ | 0.3290 | 11550 | 0.0001 | - |
394
+ | 0.3304 | 11600 | 0.0001 | - |
395
+ | 0.3318 | 11650 | 0.0001 | - |
396
+ | 0.3333 | 11700 | 0.0002 | - |
397
+ | 0.3347 | 11750 | 0.0001 | - |
398
+ | 0.3361 | 11800 | 0.0001 | - |
399
+ | 0.3375 | 11850 | 0.0001 | - |
400
+ | 0.3390 | 11900 | 0.0002 | - |
401
+ | 0.3404 | 11950 | 0.0001 | - |
402
+ | 0.3418 | 12000 | 0.0001 | - |
403
+ | 0.3432 | 12050 | 0.0002 | - |
404
+ | 0.3447 | 12100 | 0.0001 | - |
405
+ | 0.3461 | 12150 | 0.0001 | - |
406
+ | 0.3475 | 12200 | 0.0001 | - |
407
+ | 0.3489 | 12250 | 0.0003 | - |
408
+ | 0.3503 | 12300 | 0.0003 | - |
409
+ | 0.3518 | 12350 | 0.0003 | - |
410
+ | 0.3532 | 12400 | 0.0269 | - |
411
+ | 0.3546 | 12450 | 0.0475 | - |
412
+ | 0.3560 | 12500 | 0.0004 | - |
413
+ | 0.3575 | 12550 | 0.0003 | - |
414
+ | 0.3589 | 12600 | 0.0005 | - |
415
+ | 0.3603 | 12650 | 0.0003 | - |
416
+ | 0.3617 | 12700 | 0.0001 | - |
417
+ | 0.3632 | 12750 | 0.0002 | - |
418
+ | 0.3646 | 12800 | 0.0003 | - |
419
+ | 0.3660 | 12850 | 0.0002 | - |
420
+ | 0.3674 | 12900 | 0.0001 | - |
421
+ | 0.3689 | 12950 | 0.0004 | - |
422
+ | 0.3703 | 13000 | 0.0002 | - |
423
+ | 0.3717 | 13050 | 0.0002 | - |
424
+ | 0.3731 | 13100 | 0.0003 | - |
425
+ | 0.3746 | 13150 | 0.0002 | - |
426
+ | 0.3760 | 13200 | 0.0003 | - |
427
+ | 0.3774 | 13250 | 0.0003 | - |
428
+ | 0.3788 | 13300 | 0.0001 | - |
429
+ | 0.3803 | 13350 | 0.0002 | - |
430
+ | 0.3817 | 13400 | 0.0002 | - |
431
+ | 0.3831 | 13450 | 0.0002 | - |
432
+ | 0.3845 | 13500 | 0.0002 | - |
433
+ | 0.3860 | 13550 | 0.0002 | - |
434
+ | 0.3874 | 13600 | 0.0002 | - |
435
+ | 0.3888 | 13650 | 0.0001 | - |
436
+ | 0.3902 | 13700 | 0.0001 | - |
437
+ | 0.3916 | 13750 | 0.0002 | - |
438
+ | 0.3931 | 13800 | 0.0003 | - |
439
+ | 0.3945 | 13850 | 0.0002 | - |
440
+ | 0.3959 | 13900 | 0.0002 | - |
441
+ | 0.3973 | 13950 | 0.0001 | - |
442
+ | 0.3988 | 14000 | 0.0001 | - |
443
+ | 0.4002 | 14050 | 0.0001 | - |
444
+ | 0.4016 | 14100 | 0.0002 | - |
445
+ | 0.4030 | 14150 | 0.0002 | - |
446
+ | 0.4045 | 14200 | 0.0001 | - |
447
+ | 0.4059 | 14250 | 0.0001 | - |
448
+ | 0.4073 | 14300 | 0.0001 | - |
449
+ | 0.4087 | 14350 | 0.0001 | - |
450
+ | 0.4102 | 14400 | 0.0003 | - |
451
+ | 0.4116 | 14450 | 0.0002 | - |
452
+ | 0.4130 | 14500 | 0.0001 | - |
453
+ | 0.4144 | 14550 | 0.0002 | - |
454
+ | 0.4159 | 14600 | 0.0002 | - |
455
+ | 0.4173 | 14650 | 0.0001 | - |
456
+ | 0.4187 | 14700 | 0.0001 | - |
457
+ | 0.4201 | 14750 | 0.0001 | - |
458
+ | 0.4216 | 14800 | 0.0001 | - |
459
+ | 0.4230 | 14850 | 0.0001 | - |
460
+ | 0.4244 | 14900 | 0.0001 | - |
461
+ | 0.4258 | 14950 | 0.0002 | - |
462
+ | 0.4273 | 15000 | 0.0001 | - |
463
+ | 0.4287 | 15050 | 0.0001 | - |
464
+ | 0.4301 | 15100 | 0.0001 | - |
465
+ | 0.4315 | 15150 | 0.0001 | - |
466
+ | 0.4329 | 15200 | 0.0001 | - |
467
+ | 0.4344 | 15250 | 0.0001 | - |
468
+ | 0.4358 | 15300 | 0.0001 | - |
469
+ | 0.4372 | 15350 | 0.0001 | - |
470
+ | 0.4386 | 15400 | 0.0001 | - |
471
+ | 0.4401 | 15450 | 0.0001 | - |
472
+ | 0.4415 | 15500 | 0.0001 | - |
473
+ | 0.4429 | 15550 | 0.0001 | - |
474
+ | 0.4443 | 15600 | 0.0001 | - |
475
+ | 0.4458 | 15650 | 0.0001 | - |
476
+ | 0.4472 | 15700 | 0.0001 | - |
477
+ | 0.4486 | 15750 | 0.0001 | - |
478
+ | 0.4500 | 15800 | 0.0001 | - |
479
+ | 0.4515 | 15850 | 0.0017 | - |
480
+ | 0.4529 | 15900 | 0.0007 | - |
481
+ | 0.4543 | 15950 | 0.0009 | - |
482
+ | 0.4557 | 16000 | 0.0004 | - |
483
+ | 0.4572 | 16050 | 0.0006 | - |
484
+ | 0.4586 | 16100 | 0.0003 | - |
485
+ | 0.4600 | 16150 | 0.0003 | - |
486
+ | 0.4614 | 16200 | 0.0003 | - |
487
+ | 0.4629 | 16250 | 0.0003 | - |
488
+ | 0.4643 | 16300 | 0.0002 | - |
489
+ | 0.4657 | 16350 | 0.0002 | - |
490
+ | 0.4671 | 16400 | 0.0002 | - |
491
+ | 0.4686 | 16450 | 0.0002 | - |
492
+ | 0.4700 | 16500 | 0.0001 | - |
493
+ | 0.4714 | 16550 | 0.0002 | - |
494
+ | 0.4728 | 16600 | 0.0002 | - |
495
+ | 0.4743 | 16650 | 0.0001 | - |
496
+ | 0.4757 | 16700 | 0.0002 | - |
497
+ | 0.4771 | 16750 | 0.0001 | - |
498
+ | 0.4785 | 16800 | 0.0001 | - |
499
+ | 0.4799 | 16850 | 0.0001 | - |
500
+ | 0.4814 | 16900 | 0.0004 | - |
501
+ | 0.4828 | 16950 | 0.0001 | - |
502
+ | 0.4842 | 17000 | 0.0002 | - |
503
+ | 0.4856 | 17050 | 0.0001 | - |
504
+ | 0.4871 | 17100 | 0.0001 | - |
505
+ | 0.4885 | 17150 | 0.0002 | - |
506
+ | 0.4899 | 17200 | 0.0001 | - |
507
+ | 0.4913 | 17250 | 0.0001 | - |
508
+ | 0.4928 | 17300 | 0.0001 | - |
509
+ | 0.4942 | 17350 | 0.0001 | - |
510
+ | 0.4956 | 17400 | 0.0001 | - |
511
+ | 0.4970 | 17450 | 0.0001 | - |
512
+ | 0.4985 | 17500 | 0.0001 | - |
513
+ | 0.4999 | 17550 | 0.0001 | - |
514
+ | 0.5013 | 17600 | 0.0002 | - |
515
+ | 0.5027 | 17650 | 0.0001 | - |
516
+ | 0.5042 | 17700 | 0.0001 | - |
517
+ | 0.5056 | 17750 | 0.0001 | - |
518
+ | 0.5070 | 17800 | 0.0001 | - |
519
+ | 0.5084 | 17850 | 0.0001 | - |
520
+ | 0.5099 | 17900 | 0.0001 | - |
521
+ | 0.5113 | 17950 | 0.0001 | - |
522
+ | 0.5127 | 18000 | 0.0001 | - |
523
+ | 0.5141 | 18050 | 0.0001 | - |
524
+ | 0.5156 | 18100 | 0.0001 | - |
525
+ | 0.5170 | 18150 | 0.0001 | - |
526
+ | 0.5184 | 18200 | 0.0001 | - |
527
+ | 0.5198 | 18250 | 0.0001 | - |
528
+ | 0.5212 | 18300 | 0.0001 | - |
529
+ | 0.5227 | 18350 | 0.0001 | - |
530
+ | 0.5241 | 18400 | 0.0001 | - |
531
+ | 0.5255 | 18450 | 0.0001 | - |
532
+ | 0.5269 | 18500 | 0.0001 | - |
533
+ | 0.5284 | 18550 | 0.0001 | - |
534
+ | 0.5298 | 18600 | 0.0001 | - |
535
+ | 0.5312 | 18650 | 0.0001 | - |
536
+ | 0.5326 | 18700 | 0.0001 | - |
537
+ | 0.5341 | 18750 | 0.0001 | - |
538
+ | 0.5355 | 18800 | 0.0001 | - |
539
+ | 0.5369 | 18850 | 0.0001 | - |
540
+ | 0.5383 | 18900 | 0.0001 | - |
541
+ | 0.5398 | 18950 | 0.0001 | - |
542
+ | 0.5412 | 19000 | 0.0001 | - |
543
+ | 0.5426 | 19050 | 0.0001 | - |
544
+ | 0.5440 | 19100 | 0.0001 | - |
545
+ | 0.5455 | 19150 | 0.0001 | - |
546
+ | 0.5469 | 19200 | 0.0001 | - |
547
+ | 0.5483 | 19250 | 0.0001 | - |
548
+ | 0.5497 | 19300 | 0.0001 | - |
549
+ | 0.5512 | 19350 | 0.0001 | - |
550
+ | 0.5526 | 19400 | 0.0001 | - |
551
+ | 0.5540 | 19450 | 0.0 | - |
552
+ | 0.5554 | 19500 | 0.0001 | - |
553
+ | 0.5569 | 19550 | 0.0001 | - |
554
+ | 0.5583 | 19600 | 0.0001 | - |
555
+ | 0.5597 | 19650 | 0.0001 | - |
556
+ | 0.5611 | 19700 | 0.0001 | - |
557
+ | 0.5625 | 19750 | 0.0001 | - |
558
+ | 0.5640 | 19800 | 0.0001 | - |
559
+ | 0.5654 | 19850 | 0.0001 | - |
560
+ | 0.5668 | 19900 | 0.0001 | - |
561
+ | 0.5682 | 19950 | 0.0001 | - |
562
+ | 0.5697 | 20000 | 0.0001 | - |
563
+ | 0.5711 | 20050 | 0.0001 | - |
564
+ | 0.5725 | 20100 | 0.0001 | - |
565
+ | 0.5739 | 20150 | 0.0001 | - |
566
+ | 0.5754 | 20200 | 0.0 | - |
567
+ | 0.5768 | 20250 | 0.0001 | - |
568
+ | 0.5782 | 20300 | 0.0001 | - |
569
+ | 0.5796 | 20350 | 0.0 | - |
570
+ | 0.5811 | 20400 | 0.0001 | - |
571
+ | 0.5825 | 20450 | 0.0001 | - |
572
+ | 0.5839 | 20500 | 0.0001 | - |
573
+ | 0.5853 | 20550 | 0.0001 | - |
574
+ | 0.5868 | 20600 | 0.0001 | - |
575
+ | 0.5882 | 20650 | 0.0001 | - |
576
+ | 0.5896 | 20700 | 0.0001 | - |
577
+ | 0.5910 | 20750 | 0.0001 | - |
578
+ | 0.5925 | 20800 | 0.0001 | - |
579
+ | 0.5939 | 20850 | 0.0001 | - |
580
+ | 0.5953 | 20900 | 0.0001 | - |
581
+ | 0.5967 | 20950 | 0.0001 | - |
582
+ | 0.5982 | 21000 | 0.0 | - |
583
+ | 0.5996 | 21050 | 0.0001 | - |
584
+ | 0.6010 | 21100 | 0.0001 | - |
585
+ | 0.6024 | 21150 | 0.0001 | - |
586
+ | 0.6039 | 21200 | 0.0001 | - |
587
+ | 0.6053 | 21250 | 0.0002 | - |
588
+ | 0.6067 | 21300 | 0.0001 | - |
589
+ | 0.6081 | 21350 | 0.0001 | - |
590
+ | 0.6095 | 21400 | 0.0001 | - |
591
+ | 0.6110 | 21450 | 0.0001 | - |
592
+ | 0.6124 | 21500 | 0.0001 | - |
593
+ | 0.6138 | 21550 | 0.0001 | - |
594
+ | 0.6152 | 21600 | 0.0001 | - |
595
+ | 0.6167 | 21650 | 0.0001 | - |
596
+ | 0.6181 | 21700 | 0.0001 | - |
597
+ | 0.6195 | 21750 | 0.0001 | - |
598
+ | 0.6209 | 21800 | 0.0001 | - |
599
+ | 0.6224 | 21850 | 0.0 | - |
600
+ | 0.6238 | 21900 | 0.0001 | - |
601
+ | 0.6252 | 21950 | 0.0001 | - |
602
+ | 0.6266 | 22000 | 0.0001 | - |
603
+ | 0.6281 | 22050 | 0.0001 | - |
604
+ | 0.6295 | 22100 | 0.0001 | - |
605
+ | 0.6309 | 22150 | 0.0001 | - |
606
+ | 0.6323 | 22200 | 0.0001 | - |
607
+ | 0.6338 | 22250 | 0.0001 | - |
608
+ | 0.6352 | 22300 | 0.0001 | - |
609
+ | 0.6366 | 22350 | 0.0001 | - |
610
+ | 0.6380 | 22400 | 0.0001 | - |
611
+ | 0.6395 | 22450 | 0.0001 | - |
612
+ | 0.6409 | 22500 | 0.0001 | - |
613
+ | 0.6423 | 22550 | 0.0001 | - |
614
+ | 0.6437 | 22600 | 0.0001 | - |
615
+ | 0.6452 | 22650 | 0.0001 | - |
616
+ | 0.6466 | 22700 | 0.0001 | - |
617
+ | 0.6480 | 22750 | 0.0001 | - |
618
+ | 0.6494 | 22800 | 0.0001 | - |
619
+ | 0.6508 | 22850 | 0.0001 | - |
620
+ | 0.6523 | 22900 | 0.0 | - |
621
+ | 0.6537 | 22950 | 0.0001 | - |
622
+ | 0.6551 | 23000 | 0.0001 | - |
623
+ | 0.6565 | 23050 | 0.0001 | - |
624
+ | 0.6580 | 23100 | 0.0001 | - |
625
+ | 0.6594 | 23150 | 0.0001 | - |
626
+ | 0.6608 | 23200 | 0.0001 | - |
627
+ | 0.6622 | 23250 | 0.0001 | - |
628
+ | 0.6637 | 23300 | 0.0 | - |
629
+ | 0.6651 | 23350 | 0.0001 | - |
630
+ | 0.6665 | 23400 | 0.0001 | - |
631
+ | 0.6679 | 23450 | 0.0001 | - |
632
+ | 0.6694 | 23500 | 0.0 | - |
633
+ | 0.6708 | 23550 | 0.0001 | - |
634
+ | 0.6722 | 23600 | 0.0 | - |
635
+ | 0.6736 | 23650 | 0.0001 | - |
636
+ | 0.6751 | 23700 | 0.0001 | - |
637
+ | 0.6765 | 23750 | 0.0 | - |
638
+ | 0.6779 | 23800 | 0.0001 | - |
639
+ | 0.6793 | 23850 | 0.0001 | - |
640
+ | 0.6808 | 23900 | 0.0001 | - |
641
+ | 0.6822 | 23950 | 0.0001 | - |
642
+ | 0.6836 | 24000 | 0.0 | - |
643
+ | 0.6850 | 24050 | 0.0001 | - |
644
+ | 0.6865 | 24100 | 0.0 | - |
645
+ | 0.6879 | 24150 | 0.0001 | - |
646
+ | 0.6893 | 24200 | 0.0001 | - |
647
+ | 0.6907 | 24250 | 0.0001 | - |
648
+ | 0.6921 | 24300 | 0.0001 | - |
649
+ | 0.6936 | 24350 | 0.0 | - |
650
+ | 0.6950 | 24400 | 0.0001 | - |
651
+ | 0.6964 | 24450 | 0.0001 | - |
652
+ | 0.6978 | 24500 | 0.0001 | - |
653
+ | 0.6993 | 24550 | 0.0001 | - |
654
+ | 0.7007 | 24600 | 0.0 | - |
655
+ | 0.7021 | 24650 | 0.0 | - |
656
+ | 0.7035 | 24700 | 0.0001 | - |
657
+ | 0.7050 | 24750 | 0.0001 | - |
658
+ | 0.7064 | 24800 | 0.0001 | - |
659
+ | 0.7078 | 24850 | 0.0001 | - |
660
+ | 0.7092 | 24900 | 0.0001 | - |
661
+ | 0.7107 | 24950 | 0.0001 | - |
662
+ | 0.7121 | 25000 | 0.0001 | - |
663
+ | 0.7135 | 25050 | 0.0001 | - |
664
+ | 0.7149 | 25100 | 0.0001 | - |
665
+ | 0.7164 | 25150 | 0.0001 | - |
666
+ | 0.7178 | 25200 | 0.0001 | - |
667
+ | 0.7192 | 25250 | 0.0001 | - |
668
+ | 0.7206 | 25300 | 0.0001 | - |
669
+ | 0.7221 | 25350 | 0.0001 | - |
670
+ | 0.7235 | 25400 | 0.0001 | - |
671
+ | 0.7249 | 25450 | 0.0001 | - |
672
+ | 0.7263 | 25500 | 0.0001 | - |
673
+ | 0.7278 | 25550 | 0.0 | - |
674
+ | 0.7292 | 25600 | 0.0 | - |
675
+ | 0.7306 | 25650 | 0.0 | - |
676
+ | 0.7320 | 25700 | 0.0001 | - |
677
+ | 0.7335 | 25750 | 0.0001 | - |
678
+ | 0.7349 | 25800 | 0.0001 | - |
679
+ | 0.7363 | 25850 | 0.0001 | - |
680
+ | 0.7377 | 25900 | 0.0 | - |
681
+ | 0.7391 | 25950 | 0.0 | - |
682
+ | 0.7406 | 26000 | 0.0001 | - |
683
+ | 0.7420 | 26050 | 0.0001 | - |
684
+ | 0.7434 | 26100 | 0.0 | - |
685
+ | 0.7448 | 26150 | 0.0 | - |
686
+ | 0.7463 | 26200 | 0.0001 | - |
687
+ | 0.7477 | 26250 | 0.0 | - |
688
+ | 0.7491 | 26300 | 0.0 | - |
689
+ | 0.7505 | 26350 | 0.0 | - |
690
+ | 0.7520 | 26400 | 0.0001 | - |
691
+ | 0.7534 | 26450 | 0.0 | - |
692
+ | 0.7548 | 26500 | 0.0001 | - |
693
+ | 0.7562 | 26550 | 0.0001 | - |
694
+ | 0.7577 | 26600 | 0.0001 | - |
695
+ | 0.7591 | 26650 | 0.0001 | - |
696
+ | 0.7605 | 26700 | 0.0 | - |
697
+ | 0.7619 | 26750 | 0.0001 | - |
698
+ | 0.7634 | 26800 | 0.0001 | - |
699
+ | 0.7648 | 26850 | 0.0001 | - |
700
+ | 0.7662 | 26900 | 0.0 | - |
701
+ | 0.7676 | 26950 | 0.0001 | - |
702
+ | 0.7691 | 27000 | 0.0 | - |
703
+ | 0.7705 | 27050 | 0.0 | - |
704
+ | 0.7719 | 27100 | 0.0001 | - |
705
+ | 0.7733 | 27150 | 0.0 | - |
706
+ | 0.7748 | 27200 | 0.0 | - |
707
+ | 0.7762 | 27250 | 0.0001 | - |
708
+ | 0.7776 | 27300 | 0.0001 | - |
709
+ | 0.7790 | 27350 | 0.0001 | - |
710
+ | 0.7804 | 27400 | 0.0001 | - |
711
+ | 0.7819 | 27450 | 0.0 | - |
712
+ | 0.7833 | 27500 | 0.0001 | - |
713
+ | 0.7847 | 27550 | 0.0 | - |
714
+ | 0.7861 | 27600 | 0.0 | - |
715
+ | 0.7876 | 27650 | 0.0001 | - |
716
+ | 0.7890 | 27700 | 0.0001 | - |
717
+ | 0.7904 | 27750 | 0.0 | - |
718
+ | 0.7918 | 27800 | 0.0001 | - |
719
+ | 0.7933 | 27850 | 0.0001 | - |
720
+ | 0.7947 | 27900 | 0.0 | - |
721
+ | 0.7961 | 27950 | 0.0 | - |
722
+ | 0.7975 | 28000 | 0.0 | - |
723
+ | 0.7990 | 28050 | 0.0001 | - |
724
+ | 0.8004 | 28100 | 0.0 | - |
725
+ | 0.8018 | 28150 | 0.0001 | - |
726
+ | 0.8032 | 28200 | 0.0001 | - |
727
+ | 0.8047 | 28250 | 0.0 | - |
728
+ | 0.8061 | 28300 | 0.0 | - |
729
+ | 0.8075 | 28350 | 0.0 | - |
730
+ | 0.8089 | 28400 | 0.0001 | - |
731
+ | 0.8104 | 28450 | 0.0 | - |
732
+ | 0.8118 | 28500 | 0.0 | - |
733
+ | 0.8132 | 28550 | 0.0 | - |
734
+ | 0.8146 | 28600 | 0.0 | - |
735
+ | 0.8161 | 28650 | 0.0 | - |
736
+ | 0.8175 | 28700 | 0.0 | - |
737
+ | 0.8189 | 28750 | 0.0001 | - |
738
+ | 0.8203 | 28800 | 0.0 | - |
739
+ | 0.8218 | 28850 | 0.0 | - |
740
+ | 0.8232 | 28900 | 0.0 | - |
741
+ | 0.8246 | 28950 | 0.0001 | - |
742
+ | 0.8260 | 29000 | 0.0 | - |
743
+ | 0.8274 | 29050 | 0.0001 | - |
744
+ | 0.8289 | 29100 | 0.0001 | - |
745
+ | 0.8303 | 29150 | 0.0001 | - |
746
+ | 0.8317 | 29200 | 0.0001 | - |
747
+ | 0.8331 | 29250 | 0.0001 | - |
748
+ | 0.8346 | 29300 | 0.0001 | - |
749
+ | 0.8360 | 29350 | 0.0 | - |
750
+ | 0.8374 | 29400 | 0.0 | - |
751
+ | 0.8388 | 29450 | 0.0001 | - |
752
+ | 0.8403 | 29500 | 0.0001 | - |
753
+ | 0.8417 | 29550 | 0.0001 | - |
754
+ | 0.8431 | 29600 | 0.0001 | - |
755
+ | 0.8445 | 29650 | 0.0001 | - |
756
+ | 0.8460 | 29700 | 0.0 | - |
757
+ | 0.8474 | 29750 | 0.0 | - |
758
+ | 0.8488 | 29800 | 0.0001 | - |
759
+ | 0.8502 | 29850 | 0.0001 | - |
760
+ | 0.8517 | 29900 | 0.0 | - |
761
+ | 0.8531 | 29950 | 0.0001 | - |
762
+ | 0.8545 | 30000 | 0.0001 | - |
763
+ | 0.8559 | 30050 | 0.0001 | - |
764
+ | 0.8574 | 30100 | 0.0001 | - |
765
+ | 0.8588 | 30150 | 0.0 | - |
766
+ | 0.8602 | 30200 | 0.0 | - |
767
+ | 0.8616 | 30250 | 0.0001 | - |
768
+ | 0.8631 | 30300 | 0.0001 | - |
769
+ | 0.8645 | 30350 | 0.0 | - |
770
+ | 0.8659 | 30400 | 0.0 | - |
771
+ | 0.8673 | 30450 | 0.0001 | - |
772
+ | 0.8687 | 30500 | 0.0 | - |
773
+ | 0.8702 | 30550 | 0.0 | - |
774
+ | 0.8716 | 30600 | 0.0 | - |
775
+ | 0.8730 | 30650 | 0.0001 | - |
776
+ | 0.8744 | 30700 | 0.0 | - |
777
+ | 0.8759 | 30750 | 0.0 | - |
778
+ | 0.8773 | 30800 | 0.0001 | - |
779
+ | 0.8787 | 30850 | 0.0001 | - |
780
+ | 0.8801 | 30900 | 0.0 | - |
781
+ | 0.8816 | 30950 | 0.0 | - |
782
+ | 0.8830 | 31000 | 0.0 | - |
783
+ | 0.8844 | 31050 | 0.0001 | - |
784
+ | 0.8858 | 31100 | 0.0001 | - |
785
+ | 0.8873 | 31150 | 0.0001 | - |
786
+ | 0.8887 | 31200 | 0.0 | - |
787
+ | 0.8901 | 31250 | 0.0 | - |
788
+ | 0.8915 | 31300 | 0.0 | - |
789
+ | 0.8930 | 31350 | 0.0001 | - |
790
+ | 0.8944 | 31400 | 0.0 | - |
791
+ | 0.8958 | 31450 | 0.0 | - |
792
+ | 0.8972 | 31500 | 0.0 | - |
793
+ | 0.8987 | 31550 | 0.0001 | - |
794
+ | 0.9001 | 31600 | 0.0 | - |
795
+ | 0.9015 | 31650 | 0.0 | - |
796
+ | 0.9029 | 31700 | 0.0001 | - |
797
+ | 0.9044 | 31750 | 0.0 | - |
798
+ | 0.9058 | 31800 | 0.0 | - |
799
+ | 0.9072 | 31850 | 0.0 | - |
800
+ | 0.9086 | 31900 | 0.0 | - |
801
+ | 0.9100 | 31950 | 0.0001 | - |
802
+ | 0.9115 | 32000 | 0.0001 | - |
803
+ | 0.9129 | 32050 | 0.0 | - |
804
+ | 0.9143 | 32100 | 0.0 | - |
805
+ | 0.9157 | 32150 | 0.0 | - |
806
+ | 0.9172 | 32200 | 0.0 | - |
807
+ | 0.9186 | 32250 | 0.0 | - |
808
+ | 0.9200 | 32300 | 0.0 | - |
809
+ | 0.9214 | 32350 | 0.0 | - |
810
+ | 0.9229 | 32400 | 0.0 | - |
811
+ | 0.9243 | 32450 | 0.0 | - |
812
+ | 0.9257 | 32500 | 0.0 | - |
813
+ | 0.9271 | 32550 | 0.0 | - |
814
+ | 0.9286 | 32600 | 0.0001 | - |
815
+ | 0.9300 | 32650 | 0.0001 | - |
816
+ | 0.9314 | 32700 | 0.0 | - |
817
+ | 0.9328 | 32750 | 0.0001 | - |
818
+ | 0.9343 | 32800 | 0.0 | - |
819
+ | 0.9357 | 32850 | 0.0 | - |
820
+ | 0.9371 | 32900 | 0.0 | - |
821
+ | 0.9385 | 32950 | 0.0 | - |
822
+ | 0.9400 | 33000 | 0.0 | - |
823
+ | 0.9414 | 33050 | 0.0 | - |
824
+ | 0.9428 | 33100 | 0.0 | - |
825
+ | 0.9442 | 33150 | 0.0001 | - |
826
+ | 0.9457 | 33200 | 0.0001 | - |
827
+ | 0.9471 | 33250 | 0.0 | - |
828
+ | 0.9485 | 33300 | 0.0 | - |
829
+ | 0.9499 | 33350 | 0.0 | - |
830
+ | 0.9514 | 33400 | 0.0 | - |
831
+ | 0.9528 | 33450 | 0.0 | - |
832
+ | 0.9542 | 33500 | 0.0001 | - |
833
+ | 0.9556 | 33550 | 0.0 | - |
834
+ | 0.9570 | 33600 | 0.0 | - |
835
+ | 0.9585 | 33650 | 0.0 | - |
836
+ | 0.9599 | 33700 | 0.0 | - |
837
+ | 0.9613 | 33750 | 0.0001 | - |
838
+ | 0.9627 | 33800 | 0.0 | - |
839
+ | 0.9642 | 33850 | 0.0001 | - |
840
+ | 0.9656 | 33900 | 0.0001 | - |
841
+ | 0.9670 | 33950 | 0.0 | - |
842
+ | 0.9684 | 34000 | 0.0 | - |
843
+ | 0.9699 | 34050 | 0.0 | - |
844
+ | 0.9713 | 34100 | 0.0001 | - |
845
+ | 0.9727 | 34150 | 0.0001 | - |
846
+ | 0.9741 | 34200 | 0.0 | - |
847
+ | 0.9756 | 34250 | 0.0 | - |
848
+ | 0.9770 | 34300 | 0.0 | - |
849
+ | 0.9784 | 34350 | 0.0 | - |
850
+ | 0.9798 | 34400 | 0.0 | - |
851
+ | 0.9813 | 34450 | 0.0 | - |
852
+ | 0.9827 | 34500 | 0.0 | - |
853
+ | 0.9841 | 34550 | 0.0 | - |
854
+ | 0.9855 | 34600 | 0.0 | - |
855
+ | 0.9870 | 34650 | 0.0001 | - |
856
+ | 0.9884 | 34700 | 0.0 | - |
857
+ | 0.9898 | 34750 | 0.0 | - |
858
+ | 0.9912 | 34800 | 0.0 | - |
859
+ | 0.9927 | 34850 | 0.0001 | - |
860
+ | 0.9941 | 34900 | 0.0 | - |
861
+ | 0.9955 | 34950 | 0.0 | - |
862
+ | 0.9969 | 35000 | 0.0001 | - |
863
+ | 0.9983 | 35050 | 0.0 | - |
864
+ | 0.9998 | 35100 | 0.0 | - |
865
+ | **1.0** | **35108** | **-** | **0.03** |
866
+
867
+ * The bold row denotes the saved checkpoint.
868
+ ### Framework Versions
869
+ - Python: 3.11.9
870
+ - SetFit: 1.1.0.dev0
871
+ - Sentence Transformers: 3.0.1
872
+ - Transformers: 4.44.2
873
+ - PyTorch: 2.4.0+cu121
874
+ - Datasets: 2.21.0
875
+ - Tokenizers: 0.19.1
876
+
877
+ ## Citation
878
+
879
+ ### BibTeX
880
+ ```bibtex
881
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
882
+ doi = {10.48550/ARXIV.2209.11055},
883
+ url = {https://arxiv.org/abs/2209.11055},
884
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
885
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
886
+ title = {Efficient Few-Shot Learning Without Prompts},
887
+ publisher = {arXiv},
888
+ year = {2022},
889
+ copyright = {Creative Commons Attribution 4.0 International}
890
+ }
891
+ ```
892
+
893
+ <!--
894
+ ## Glossary
895
+
896
+ *Clearly define terms in order to be accessible across audiences.*
897
+ -->
898
+
899
+ <!--
900
+ ## Model Card Authors
901
+
902
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
903
+ -->
904
+
905
+ <!--
906
+ ## Model Card Contact
907
+
908
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
909
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bge-large-en-v1.5-brahmaputra-iter-9-2nd-1-epoch/step_35108",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Tablejoin",
4
+ "Rejection",
5
+ "Aggregation",
6
+ "Lookup",
7
+ "Generalreply",
8
+ "Viewtables",
9
+ "Lookup_1"
10
+ ],
11
+ "normalize_embeddings": false
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbee10fc8a838e46a1d39249793f87d9aeb1a42c71de9c01bbfa2467412ef00d
3
+ size 1340612432
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f53bc22b13eef313deb580b057eadb37fe62fd82303158475ceb0117adce0b6f
3
+ size 58575
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff