Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +779 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,779 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-large-en-v1.5
|
3 |
+
datasets:
|
4 |
+
- nazhan/brahmaputra-full-datasets-iter-8
|
5 |
+
library_name: setfit
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- setfit
|
11 |
+
- sentence-transformers
|
12 |
+
- text-classification
|
13 |
+
- generated_from_setfit_trainer
|
14 |
+
widget:
|
15 |
+
- text: I'm not interested in filtering the results.
|
16 |
+
- text: Please don't filter the data at this point.
|
17 |
+
- text: How's your day going?
|
18 |
+
- text: What’s the best way to merge the Products and Orders tables to identify products
|
19 |
+
with the highest sales growth?
|
20 |
+
- text: When is your birthday?
|
21 |
+
inference: true
|
22 |
+
model-index:
|
23 |
+
- name: SetFit with BAAI/bge-large-en-v1.5
|
24 |
+
results:
|
25 |
+
- task:
|
26 |
+
type: text-classification
|
27 |
+
name: Text Classification
|
28 |
+
dataset:
|
29 |
+
name: nazhan/brahmaputra-full-datasets-iter-8
|
30 |
+
type: nazhan/brahmaputra-full-datasets-iter-8
|
31 |
+
split: test
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 1.0
|
35 |
+
name: Accuracy
|
36 |
+
---
|
37 |
+
|
38 |
+
# SetFit with BAAI/bge-large-en-v1.5
|
39 |
+
|
40 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [nazhan/brahmaputra-full-datasets-iter-8](https://huggingface.co/datasets/nazhan/brahmaputra-full-datasets-iter-8) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
41 |
+
|
42 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
43 |
+
|
44 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
45 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
46 |
+
|
47 |
+
## Model Details
|
48 |
+
|
49 |
+
### Model Description
|
50 |
+
- **Model Type:** SetFit
|
51 |
+
- **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
|
52 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
53 |
+
- **Maximum Sequence Length:** 512 tokens
|
54 |
+
- **Number of Classes:** 7 classes
|
55 |
+
- **Training Dataset:** [nazhan/brahmaputra-full-datasets-iter-8](https://huggingface.co/datasets/nazhan/brahmaputra-full-datasets-iter-8)
|
56 |
+
<!-- - **Language:** Unknown -->
|
57 |
+
<!-- - **License:** Unknown -->
|
58 |
+
|
59 |
+
### Model Sources
|
60 |
+
|
61 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
62 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
63 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
64 |
+
|
65 |
+
### Model Labels
|
66 |
+
| Label | Examples |
|
67 |
+
|:-------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
68 |
+
| Lookup_1 | <ul><li>'Analyze product category revenue impact.'</li><li>'Show me monthly EBIT by product.'</li><li>'Visualize M&A deal size distribution.'</li></ul> |
|
69 |
+
| Tablejoin | <ul><li>'Could you link the Orders and Employees tables to find out which departments are processing the most orders?'</li><li>'Is it possible to combine the Employees and Orders tables to see which employees are assigned to specific order types?'</li><li>'Join data_asset_kpi_cf with data_asset_001_kpm tables.'</li></ul> |
|
70 |
+
| Lookup | <ul><li>"Show me the details of employees with the last name 'Smith'."</li><li>"Filter by customers with the first name 'Emily' and show me their email addresses."</li><li>"Show me the products with 'Tablet' in the name and filter by price above 200."</li></ul> |
|
71 |
+
| Rejection | <ul><li>"Let's not worry about generating additional data."</li><li>"I'd prefer not to apply any filters."</li><li>"I don't want to sort or filter right now."</li></ul> |
|
72 |
+
| Viewtables | <ul><li>'What is the inventory of tables held in the starhub_data_asset database?'</li><li>'What tables are available in the starhub_data_asset database for performing basic data explorations?'</li><li>'What is the complete list of all the tables stored in the starhub_data_asset database that require a join operation for data analysis?'</li></ul> |
|
73 |
+
| Generalreply | <ul><li>"Oh, I enjoy spending my free time doing a few different things! Sometimes I like to read, other times I might go for a walk or watch a movie. It really just depends on what I'm in the mood for. What about you, how do you like to spend your free time?"</li><li>'What is your favorite color?'</li><li>"that's not good."</li></ul> |
|
74 |
+
| Aggregation | <ul><li>'What’s the total number of products sold in the Electronics category?'</li><li>'Determine the total number of orders placed during promotional periods.'</li><li>'What’s the total sales amount recorded in the Orders table?'</li></ul> |
|
75 |
+
|
76 |
+
## Evaluation
|
77 |
+
|
78 |
+
### Metrics
|
79 |
+
| Label | Accuracy |
|
80 |
+
|:--------|:---------|
|
81 |
+
| **all** | 1.0 |
|
82 |
+
|
83 |
+
## Uses
|
84 |
+
|
85 |
+
### Direct Use for Inference
|
86 |
+
|
87 |
+
First install the SetFit library:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
pip install setfit
|
91 |
+
```
|
92 |
+
|
93 |
+
Then you can load this model and run inference.
|
94 |
+
|
95 |
+
```python
|
96 |
+
from setfit import SetFitModel
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-8-2-epoch")
|
100 |
+
# Run inference
|
101 |
+
preds = model("How's your day going?")
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:--------|:----|
|
133 |
+
| Word count | 3 | 11.0696 | 62 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:-------------|:----------------------|
|
137 |
+
| Tablejoin | 112 |
|
138 |
+
| Rejection | 67 |
|
139 |
+
| Aggregation | 71 |
|
140 |
+
| Lookup | 56 |
|
141 |
+
| Generalreply | 69 |
|
142 |
+
| Viewtables | 73 |
|
143 |
+
| Lookup_1 | 69 |
|
144 |
+
|
145 |
+
### Training Hyperparameters
|
146 |
+
- batch_size: (16, 16)
|
147 |
+
- num_epochs: (2, 2)
|
148 |
+
- max_steps: -1
|
149 |
+
- sampling_strategy: oversampling
|
150 |
+
- body_learning_rate: (2e-05, 1e-05)
|
151 |
+
- head_learning_rate: 0.01
|
152 |
+
- loss: CosineSimilarityLoss
|
153 |
+
- distance_metric: cosine_distance
|
154 |
+
- margin: 0.25
|
155 |
+
- end_to_end: False
|
156 |
+
- use_amp: False
|
157 |
+
- warmup_proportion: 0.1
|
158 |
+
- seed: 42
|
159 |
+
- eval_max_steps: -1
|
160 |
+
- load_best_model_at_end: True
|
161 |
+
|
162 |
+
### Training Results
|
163 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
164 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
165 |
+
| 0.0001 | 1 | 0.1865 | - |
|
166 |
+
| 0.0035 | 50 | 0.1599 | - |
|
167 |
+
| 0.0070 | 100 | 0.1933 | - |
|
168 |
+
| 0.0106 | 150 | 0.1595 | - |
|
169 |
+
| 0.0141 | 200 | 0.0899 | - |
|
170 |
+
| 0.0176 | 250 | 0.1334 | - |
|
171 |
+
| 0.0211 | 300 | 0.0722 | - |
|
172 |
+
| 0.0246 | 350 | 0.0411 | - |
|
173 |
+
| 0.0282 | 400 | 0.0171 | - |
|
174 |
+
| 0.0317 | 450 | 0.0293 | - |
|
175 |
+
| 0.0352 | 500 | 0.0218 | - |
|
176 |
+
| 0.0387 | 550 | 0.0057 | - |
|
177 |
+
| 0.0422 | 600 | 0.0065 | - |
|
178 |
+
| 0.0458 | 650 | 0.0047 | - |
|
179 |
+
| 0.0493 | 700 | 0.0045 | - |
|
180 |
+
| 0.0528 | 750 | 0.0048 | - |
|
181 |
+
| 0.0563 | 800 | 0.0032 | - |
|
182 |
+
| 0.0599 | 850 | 0.0038 | - |
|
183 |
+
| 0.0634 | 900 | 0.0033 | - |
|
184 |
+
| 0.0669 | 950 | 0.0027 | - |
|
185 |
+
| 0.0704 | 1000 | 0.0025 | - |
|
186 |
+
| 0.0739 | 1050 | 0.0024 | - |
|
187 |
+
| 0.0775 | 1100 | 0.0021 | - |
|
188 |
+
| 0.0810 | 1150 | 0.0025 | - |
|
189 |
+
| 0.0845 | 1200 | 0.0016 | - |
|
190 |
+
| 0.0880 | 1250 | 0.0019 | - |
|
191 |
+
| 0.0915 | 1300 | 0.0017 | - |
|
192 |
+
| 0.0951 | 1350 | 0.0016 | - |
|
193 |
+
| 0.0986 | 1400 | 0.0025 | - |
|
194 |
+
| 0.1021 | 1450 | 0.0016 | - |
|
195 |
+
| 0.1056 | 1500 | 0.0015 | - |
|
196 |
+
| 0.1091 | 1550 | 0.0012 | - |
|
197 |
+
| 0.1127 | 1600 | 0.001 | - |
|
198 |
+
| 0.1162 | 1650 | 0.0012 | - |
|
199 |
+
| 0.1197 | 1700 | 0.0012 | - |
|
200 |
+
| 0.1232 | 1750 | 0.0013 | - |
|
201 |
+
| 0.1267 | 1800 | 0.0012 | - |
|
202 |
+
| 0.1303 | 1850 | 0.0009 | - |
|
203 |
+
| 0.1338 | 1900 | 0.0011 | - |
|
204 |
+
| 0.1373 | 1950 | 0.001 | - |
|
205 |
+
| 0.1408 | 2000 | 0.0009 | - |
|
206 |
+
| 0.1443 | 2050 | 0.0009 | - |
|
207 |
+
| 0.1479 | 2100 | 0.0008 | - |
|
208 |
+
| 0.1514 | 2150 | 0.0007 | - |
|
209 |
+
| 0.1549 | 2200 | 0.0008 | - |
|
210 |
+
| 0.1584 | 2250 | 0.0008 | - |
|
211 |
+
| 0.1619 | 2300 | 0.0008 | - |
|
212 |
+
| 0.1655 | 2350 | 0.0007 | - |
|
213 |
+
| 0.1690 | 2400 | 0.0008 | - |
|
214 |
+
| 0.1725 | 2450 | 0.0006 | - |
|
215 |
+
| 0.1760 | 2500 | 0.0005 | - |
|
216 |
+
| 0.1796 | 2550 | 0.0006 | - |
|
217 |
+
| 0.1831 | 2600 | 0.0005 | - |
|
218 |
+
| 0.1866 | 2650 | 0.0006 | - |
|
219 |
+
| 0.1901 | 2700 | 0.0005 | - |
|
220 |
+
| 0.1936 | 2750 | 0.0007 | - |
|
221 |
+
| 0.1972 | 2800 | 0.0006 | - |
|
222 |
+
| 0.2007 | 2850 | 0.0005 | - |
|
223 |
+
| 0.2042 | 2900 | 0.0006 | - |
|
224 |
+
| 0.2077 | 2950 | 0.0007 | - |
|
225 |
+
| 0.2112 | 3000 | 0.0006 | - |
|
226 |
+
| 0.2148 | 3050 | 0.0005 | - |
|
227 |
+
| 0.2183 | 3100 | 0.0005 | - |
|
228 |
+
| 0.2218 | 3150 | 0.0005 | - |
|
229 |
+
| 0.2253 | 3200 | 0.0006 | - |
|
230 |
+
| 0.2288 | 3250 | 0.0005 | - |
|
231 |
+
| 0.2324 | 3300 | 0.0006 | - |
|
232 |
+
| 0.2359 | 3350 | 0.0004 | - |
|
233 |
+
| 0.2394 | 3400 | 0.0005 | - |
|
234 |
+
| 0.2429 | 3450 | 0.0005 | - |
|
235 |
+
| 0.2464 | 3500 | 0.0004 | - |
|
236 |
+
| 0.2500 | 3550 | 0.0006 | - |
|
237 |
+
| 0.2535 | 3600 | 0.0004 | - |
|
238 |
+
| 0.2570 | 3650 | 0.0004 | - |
|
239 |
+
| 0.2605 | 3700 | 0.0004 | - |
|
240 |
+
| 0.2640 | 3750 | 0.0004 | - |
|
241 |
+
| 0.2676 | 3800 | 0.0003 | - |
|
242 |
+
| 0.2711 | 3850 | 0.0004 | - |
|
243 |
+
| 0.2746 | 3900 | 0.0005 | - |
|
244 |
+
| 0.2781 | 3950 | 0.0004 | - |
|
245 |
+
| 0.2817 | 4000 | 0.0004 | - |
|
246 |
+
| 0.2852 | 4050 | 0.0003 | - |
|
247 |
+
| 0.2887 | 4100 | 0.0004 | - |
|
248 |
+
| 0.2922 | 4150 | 0.0004 | - |
|
249 |
+
| 0.2957 | 4200 | 0.0004 | - |
|
250 |
+
| 0.2993 | 4250 | 0.0005 | - |
|
251 |
+
| 0.3028 | 4300 | 0.0004 | - |
|
252 |
+
| 0.3063 | 4350 | 0.0004 | - |
|
253 |
+
| 0.3098 | 4400 | 0.0003 | - |
|
254 |
+
| 0.3133 | 4450 | 0.0004 | - |
|
255 |
+
| 0.3169 | 4500 | 0.0004 | - |
|
256 |
+
| 0.3204 | 4550 | 0.0003 | - |
|
257 |
+
| 0.3239 | 4600 | 0.0003 | - |
|
258 |
+
| 0.3274 | 4650 | 0.0004 | - |
|
259 |
+
| 0.3309 | 4700 | 0.0003 | - |
|
260 |
+
| 0.3345 | 4750 | 0.0003 | - |
|
261 |
+
| 0.3380 | 4800 | 0.0003 | - |
|
262 |
+
| 0.3415 | 4850 | 0.0003 | - |
|
263 |
+
| 0.3450 | 4900 | 0.0004 | - |
|
264 |
+
| 0.3485 | 4950 | 0.0003 | - |
|
265 |
+
| 0.3521 | 5000 | 0.0003 | - |
|
266 |
+
| 0.3556 | 5050 | 0.0003 | - |
|
267 |
+
| 0.3591 | 5100 | 0.0003 | - |
|
268 |
+
| 0.3626 | 5150 | 0.0004 | - |
|
269 |
+
| 0.3661 | 5200 | 0.0002 | - |
|
270 |
+
| 0.3697 | 5250 | 0.0004 | - |
|
271 |
+
| 0.3732 | 5300 | 0.0003 | - |
|
272 |
+
| 0.3767 | 5350 | 0.0003 | - |
|
273 |
+
| 0.3802 | 5400 | 0.0002 | - |
|
274 |
+
| 0.3837 | 5450 | 0.0003 | - |
|
275 |
+
| 0.3873 | 5500 | 0.0003 | - |
|
276 |
+
| 0.3908 | 5550 | 0.0003 | - |
|
277 |
+
| 0.3943 | 5600 | 0.0002 | - |
|
278 |
+
| 0.3978 | 5650 | 0.0003 | - |
|
279 |
+
| 0.4014 | 5700 | 0.0003 | - |
|
280 |
+
| 0.4049 | 5750 | 0.0002 | - |
|
281 |
+
| 0.4084 | 5800 | 0.0003 | - |
|
282 |
+
| 0.4119 | 5850 | 0.0003 | - |
|
283 |
+
| 0.4154 | 5900 | 0.0003 | - |
|
284 |
+
| 0.4190 | 5950 | 0.0002 | - |
|
285 |
+
| 0.4225 | 6000 | 0.0002 | - |
|
286 |
+
| 0.4260 | 6050 | 0.0002 | - |
|
287 |
+
| 0.4295 | 6100 | 0.0003 | - |
|
288 |
+
| 0.4330 | 6150 | 0.0003 | - |
|
289 |
+
| 0.4366 | 6200 | 0.0002 | - |
|
290 |
+
| 0.4401 | 6250 | 0.0003 | - |
|
291 |
+
| 0.4436 | 6300 | 0.0003 | - |
|
292 |
+
| 0.4471 | 6350 | 0.0002 | - |
|
293 |
+
| 0.4506 | 6400 | 0.0002 | - |
|
294 |
+
| 0.4542 | 6450 | 0.0002 | - |
|
295 |
+
| 0.4577 | 6500 | 0.0002 | - |
|
296 |
+
| 0.4612 | 6550 | 0.0002 | - |
|
297 |
+
| 0.4647 | 6600 | 0.0002 | - |
|
298 |
+
| 0.4682 | 6650 | 0.0002 | - |
|
299 |
+
| 0.4718 | 6700 | 0.0002 | - |
|
300 |
+
| 0.4753 | 6750 | 0.0003 | - |
|
301 |
+
| 0.4788 | 6800 | 0.0003 | - |
|
302 |
+
| 0.4823 | 6850 | 0.0002 | - |
|
303 |
+
| 0.4858 | 6900 | 0.0003 | - |
|
304 |
+
| 0.4894 | 6950 | 0.0002 | - |
|
305 |
+
| 0.4929 | 7000 | 0.0003 | - |
|
306 |
+
| 0.4964 | 7050 | 0.0002 | - |
|
307 |
+
| 0.4999 | 7100 | 0.0002 | - |
|
308 |
+
| 0.5035 | 7150 | 0.0002 | - |
|
309 |
+
| 0.5070 | 7200 | 0.0003 | - |
|
310 |
+
| 0.5105 | 7250 | 0.0002 | - |
|
311 |
+
| 0.5140 | 7300 | 0.0003 | - |
|
312 |
+
| 0.5175 | 7350 | 0.0004 | - |
|
313 |
+
| 0.5211 | 7400 | 0.0002 | - |
|
314 |
+
| 0.5246 | 7450 | 0.0002 | - |
|
315 |
+
| 0.5281 | 7500 | 0.0002 | - |
|
316 |
+
| 0.5316 | 7550 | 0.0002 | - |
|
317 |
+
| 0.5351 | 7600 | 0.0002 | - |
|
318 |
+
| 0.5387 | 7650 | 0.0002 | - |
|
319 |
+
| 0.5422 | 7700 | 0.0002 | - |
|
320 |
+
| 0.5457 | 7750 | 0.0002 | - |
|
321 |
+
| 0.5492 | 7800 | 0.0003 | - |
|
322 |
+
| 0.5527 | 7850 | 0.0002 | - |
|
323 |
+
| 0.5563 | 7900 | 0.0002 | - |
|
324 |
+
| 0.5598 | 7950 | 0.0002 | - |
|
325 |
+
| 0.5633 | 8000 | 0.0002 | - |
|
326 |
+
| 0.5668 | 8050 | 0.0002 | - |
|
327 |
+
| 0.5703 | 8100 | 0.0002 | - |
|
328 |
+
| 0.5739 | 8150 | 0.0002 | - |
|
329 |
+
| 0.5774 | 8200 | 0.0003 | - |
|
330 |
+
| 0.5809 | 8250 | 0.0002 | - |
|
331 |
+
| 0.5844 | 8300 | 0.0002 | - |
|
332 |
+
| 0.5879 | 8350 | 0.0002 | - |
|
333 |
+
| 0.5915 | 8400 | 0.0002 | - |
|
334 |
+
| 0.5950 | 8450 | 0.0001 | - |
|
335 |
+
| 0.5985 | 8500 | 0.0001 | - |
|
336 |
+
| 0.6020 | 8550 | 0.0001 | - |
|
337 |
+
| 0.6055 | 8600 | 0.0001 | - |
|
338 |
+
| 0.6091 | 8650 | 0.0002 | - |
|
339 |
+
| 0.6126 | 8700 | 0.0002 | - |
|
340 |
+
| 0.6161 | 8750 | 0.0002 | - |
|
341 |
+
| 0.6196 | 8800 | 0.0002 | - |
|
342 |
+
| 0.6232 | 8850 | 0.0002 | - |
|
343 |
+
| 0.6267 | 8900 | 0.0001 | - |
|
344 |
+
| 0.6302 | 8950 | 0.0001 | - |
|
345 |
+
| 0.6337 | 9000 | 0.0002 | - |
|
346 |
+
| 0.6372 | 9050 | 0.0002 | - |
|
347 |
+
| 0.6408 | 9100 | 0.0002 | - |
|
348 |
+
| 0.6443 | 9150 | 0.0001 | - |
|
349 |
+
| 0.6478 | 9200 | 0.0002 | - |
|
350 |
+
| 0.6513 | 9250 | 0.0003 | - |
|
351 |
+
| 0.6548 | 9300 | 0.0002 | - |
|
352 |
+
| 0.6584 | 9350 | 0.0003 | - |
|
353 |
+
| 0.6619 | 9400 | 0.0001 | - |
|
354 |
+
| 0.6654 | 9450 | 0.0001 | - |
|
355 |
+
| 0.6689 | 9500 | 0.0001 | - |
|
356 |
+
| 0.6724 | 9550 | 0.0001 | - |
|
357 |
+
| 0.6760 | 9600 | 0.0001 | - |
|
358 |
+
| 0.6795 | 9650 | 0.0002 | - |
|
359 |
+
| 0.6830 | 9700 | 0.0002 | - |
|
360 |
+
| 0.6865 | 9750 | 0.0002 | - |
|
361 |
+
| 0.6900 | 9800 | 0.0001 | - |
|
362 |
+
| 0.6936 | 9850 | 0.0001 | - |
|
363 |
+
| 0.6971 | 9900 | 0.0002 | - |
|
364 |
+
| 0.7006 | 9950 | 0.0001 | - |
|
365 |
+
| 0.7041 | 10000 | 0.0001 | - |
|
366 |
+
| 0.7076 | 10050 | 0.0001 | - |
|
367 |
+
| 0.7112 | 10100 | 0.0002 | - |
|
368 |
+
| 0.7147 | 10150 | 0.0001 | - |
|
369 |
+
| 0.7182 | 10200 | 0.0002 | - |
|
370 |
+
| 0.7217 | 10250 | 0.0002 | - |
|
371 |
+
| 0.7252 | 10300 | 0.0001 | - |
|
372 |
+
| 0.7288 | 10350 | 0.0001 | - |
|
373 |
+
| 0.7323 | 10400 | 0.0001 | - |
|
374 |
+
| 0.7358 | 10450 | 0.0001 | - |
|
375 |
+
| 0.7393 | 10500 | 0.0002 | - |
|
376 |
+
| 0.7429 | 10550 | 0.0001 | - |
|
377 |
+
| 0.7464 | 10600 | 0.0002 | - |
|
378 |
+
| 0.7499 | 10650 | 0.0001 | - |
|
379 |
+
| 0.7534 | 10700 | 0.0001 | - |
|
380 |
+
| 0.7569 | 10750 | 0.0002 | - |
|
381 |
+
| 0.7605 | 10800 | 0.0002 | - |
|
382 |
+
| 0.7640 | 10850 | 0.0001 | - |
|
383 |
+
| 0.7675 | 10900 | 0.0001 | - |
|
384 |
+
| 0.7710 | 10950 | 0.0001 | - |
|
385 |
+
| 0.7745 | 11000 | 0.0001 | - |
|
386 |
+
| 0.7781 | 11050 | 0.0001 | - |
|
387 |
+
| 0.7816 | 11100 | 0.0001 | - |
|
388 |
+
| 0.7851 | 11150 | 0.0001 | - |
|
389 |
+
| 0.7886 | 11200 | 0.0001 | - |
|
390 |
+
| 0.7921 | 11250 | 0.0001 | - |
|
391 |
+
| 0.7957 | 11300 | 0.0001 | - |
|
392 |
+
| 0.7992 | 11350 | 0.0001 | - |
|
393 |
+
| 0.8027 | 11400 | 0.0002 | - |
|
394 |
+
| 0.8062 | 11450 | 0.0001 | - |
|
395 |
+
| 0.8097 | 11500 | 0.0001 | - |
|
396 |
+
| 0.8133 | 11550 | 0.0001 | - |
|
397 |
+
| 0.8168 | 11600 | 0.0001 | - |
|
398 |
+
| 0.8203 | 11650 | 0.0001 | - |
|
399 |
+
| 0.8238 | 11700 | 0.0001 | - |
|
400 |
+
| 0.8273 | 11750 | 0.0001 | - |
|
401 |
+
| 0.8309 | 11800 | 0.0001 | - |
|
402 |
+
| 0.8344 | 11850 | 0.0001 | - |
|
403 |
+
| 0.8379 | 11900 | 0.0001 | - |
|
404 |
+
| 0.8414 | 11950 | 0.0001 | - |
|
405 |
+
| 0.8450 | 12000 | 0.0001 | - |
|
406 |
+
| 0.8485 | 12050 | 0.0001 | - |
|
407 |
+
| 0.8520 | 12100 | 0.0001 | - |
|
408 |
+
| 0.8555 | 12150 | 0.0001 | - |
|
409 |
+
| 0.8590 | 12200 | 0.0001 | - |
|
410 |
+
| 0.8626 | 12250 | 0.0002 | - |
|
411 |
+
| 0.8661 | 12300 | 0.0002 | - |
|
412 |
+
| 0.8696 | 12350 | 0.0002 | - |
|
413 |
+
| 0.8731 | 12400 | 0.0002 | - |
|
414 |
+
| 0.8766 | 12450 | 0.0001 | - |
|
415 |
+
| 0.8802 | 12500 | 0.0001 | - |
|
416 |
+
| 0.8837 | 12550 | 0.0001 | - |
|
417 |
+
| 0.8872 | 12600 | 0.0001 | - |
|
418 |
+
| 0.8907 | 12650 | 0.0002 | - |
|
419 |
+
| 0.8942 | 12700 | 0.0001 | - |
|
420 |
+
| 0.8978 | 12750 | 0.0001 | - |
|
421 |
+
| 0.9013 | 12800 | 0.0001 | - |
|
422 |
+
| 0.9048 | 12850 | 0.0001 | - |
|
423 |
+
| 0.9083 | 12900 | 0.0001 | - |
|
424 |
+
| 0.9118 | 12950 | 0.0001 | - |
|
425 |
+
| 0.9154 | 13000 | 0.0001 | - |
|
426 |
+
| 0.9189 | 13050 | 0.0001 | - |
|
427 |
+
| 0.9224 | 13100 | 0.0001 | - |
|
428 |
+
| 0.9259 | 13150 | 0.0001 | - |
|
429 |
+
| 0.9294 | 13200 | 0.0001 | - |
|
430 |
+
| 0.9330 | 13250 | 0.0001 | - |
|
431 |
+
| 0.9365 | 13300 | 0.0001 | - |
|
432 |
+
| 0.9400 | 13350 | 0.0001 | - |
|
433 |
+
| 0.9435 | 13400 | 0.0001 | - |
|
434 |
+
| 0.9470 | 13450 | 0.0001 | - |
|
435 |
+
| 0.9506 | 13500 | 0.0001 | - |
|
436 |
+
| 0.9541 | 13550 | 0.0001 | - |
|
437 |
+
| 0.9576 | 13600 | 0.0001 | - |
|
438 |
+
| 0.9611 | 13650 | 0.0001 | - |
|
439 |
+
| 0.9647 | 13700 | 0.0001 | - |
|
440 |
+
| 0.9682 | 13750 | 0.0001 | - |
|
441 |
+
| 0.9717 | 13800 | 0.0001 | - |
|
442 |
+
| 0.9752 | 13850 | 0.0001 | - |
|
443 |
+
| 0.9787 | 13900 | 0.0001 | - |
|
444 |
+
| 0.9823 | 13950 | 0.0001 | - |
|
445 |
+
| 0.9858 | 14000 | 0.0001 | - |
|
446 |
+
| 0.9893 | 14050 | 0.0001 | - |
|
447 |
+
| 0.9928 | 14100 | 0.0001 | - |
|
448 |
+
| 0.9963 | 14150 | 0.0002 | - |
|
449 |
+
| 0.9999 | 14200 | 0.0001 | - |
|
450 |
+
| 1.0 | 14202 | - | 0.0082 |
|
451 |
+
| 1.0034 | 14250 | 0.0001 | - |
|
452 |
+
| 1.0069 | 14300 | 0.0001 | - |
|
453 |
+
| 1.0104 | 14350 | 0.0001 | - |
|
454 |
+
| 1.0139 | 14400 | 0.0001 | - |
|
455 |
+
| 1.0175 | 14450 | 0.0001 | - |
|
456 |
+
| 1.0210 | 14500 | 0.0001 | - |
|
457 |
+
| 1.0245 | 14550 | 0.0001 | - |
|
458 |
+
| 1.0280 | 14600 | 0.0001 | - |
|
459 |
+
| 1.0315 | 14650 | 0.0001 | - |
|
460 |
+
| 1.0351 | 14700 | 0.0001 | - |
|
461 |
+
| 1.0386 | 14750 | 0.0001 | - |
|
462 |
+
| 1.0421 | 14800 | 0.0001 | - |
|
463 |
+
| 1.0456 | 14850 | 0.0001 | - |
|
464 |
+
| 1.0491 | 14900 | 0.0001 | - |
|
465 |
+
| 1.0527 | 14950 | 0.0001 | - |
|
466 |
+
| 1.0562 | 15000 | 0.0001 | - |
|
467 |
+
| 1.0597 | 15050 | 0.0001 | - |
|
468 |
+
| 1.0632 | 15100 | 0.0001 | - |
|
469 |
+
| 1.0668 | 15150 | 0.0001 | - |
|
470 |
+
| 1.0703 | 15200 | 0.0001 | - |
|
471 |
+
| 1.0738 | 15250 | 0.0001 | - |
|
472 |
+
| 1.0773 | 15300 | 0.0001 | - |
|
473 |
+
| 1.0808 | 15350 | 0.0001 | - |
|
474 |
+
| 1.0844 | 15400 | 0.0001 | - |
|
475 |
+
| 1.0879 | 15450 | 0.0001 | - |
|
476 |
+
| 1.0914 | 15500 | 0.0001 | - |
|
477 |
+
| 1.0949 | 15550 | 0.0001 | - |
|
478 |
+
| 1.0984 | 15600 | 0.0001 | - |
|
479 |
+
| 1.1020 | 15650 | 0.0001 | - |
|
480 |
+
| 1.1055 | 15700 | 0.0001 | - |
|
481 |
+
| 1.1090 | 15750 | 0.0001 | - |
|
482 |
+
| 1.1125 | 15800 | 0.0001 | - |
|
483 |
+
| 1.1160 | 15850 | 0.0001 | - |
|
484 |
+
| 1.1196 | 15900 | 0.0001 | - |
|
485 |
+
| 1.1231 | 15950 | 0.0001 | - |
|
486 |
+
| 1.1266 | 16000 | 0.0001 | - |
|
487 |
+
| 1.1301 | 16050 | 0.0001 | - |
|
488 |
+
| 1.1336 | 16100 | 0.0001 | - |
|
489 |
+
| 1.1372 | 16150 | 0.0001 | - |
|
490 |
+
| 1.1407 | 16200 | 0.0001 | - |
|
491 |
+
| 1.1442 | 16250 | 0.0001 | - |
|
492 |
+
| 1.1477 | 16300 | 0.0001 | - |
|
493 |
+
| 1.1512 | 16350 | 0.0001 | - |
|
494 |
+
| 1.1548 | 16400 | 0.0001 | - |
|
495 |
+
| 1.1583 | 16450 | 0.0001 | - |
|
496 |
+
| 1.1618 | 16500 | 0.0001 | - |
|
497 |
+
| 1.1653 | 16550 | 0.0001 | - |
|
498 |
+
| 1.1688 | 16600 | 0.0001 | - |
|
499 |
+
| 1.1724 | 16650 | 0.0001 | - |
|
500 |
+
| 1.1759 | 16700 | 0.0001 | - |
|
501 |
+
| 1.1794 | 16750 | 0.0001 | - |
|
502 |
+
| 1.1829 | 16800 | 0.0001 | - |
|
503 |
+
| 1.1865 | 16850 | 0.0001 | - |
|
504 |
+
| 1.1900 | 16900 | 0.0001 | - |
|
505 |
+
| 1.1935 | 16950 | 0.0001 | - |
|
506 |
+
| 1.1970 | 17000 | 0.0001 | - |
|
507 |
+
| 1.2005 | 17050 | 0.0001 | - |
|
508 |
+
| 1.2041 | 17100 | 0.0001 | - |
|
509 |
+
| 1.2076 | 17150 | 0.0001 | - |
|
510 |
+
| 1.2111 | 17200 | 0.0001 | - |
|
511 |
+
| 1.2146 | 17250 | 0.0001 | - |
|
512 |
+
| 1.2181 | 17300 | 0.0001 | - |
|
513 |
+
| 1.2217 | 17350 | 0.0001 | - |
|
514 |
+
| 1.2252 | 17400 | 0.0001 | - |
|
515 |
+
| 1.2287 | 17450 | 0.0001 | - |
|
516 |
+
| 1.2322 | 17500 | 0.0001 | - |
|
517 |
+
| 1.2357 | 17550 | 0.0001 | - |
|
518 |
+
| 1.2393 | 17600 | 0.0001 | - |
|
519 |
+
| 1.2428 | 17650 | 0.0001 | - |
|
520 |
+
| 1.2463 | 17700 | 0.0001 | - |
|
521 |
+
| 1.2498 | 17750 | 0.0001 | - |
|
522 |
+
| 1.2533 | 17800 | 0.0001 | - |
|
523 |
+
| 1.2569 | 17850 | 0.0001 | - |
|
524 |
+
| 1.2604 | 17900 | 0.0001 | - |
|
525 |
+
| 1.2639 | 17950 | 0.0001 | - |
|
526 |
+
| 1.2674 | 18000 | 0.0001 | - |
|
527 |
+
| 1.2709 | 18050 | 0.0001 | - |
|
528 |
+
| 1.2745 | 18100 | 0.0001 | - |
|
529 |
+
| 1.2780 | 18150 | 0.0001 | - |
|
530 |
+
| 1.2815 | 18200 | 0.0001 | - |
|
531 |
+
| 1.2850 | 18250 | 0.0001 | - |
|
532 |
+
| 1.2886 | 18300 | 0.0001 | - |
|
533 |
+
| 1.2921 | 18350 | 0.0001 | - |
|
534 |
+
| 1.2956 | 18400 | 0.0001 | - |
|
535 |
+
| 1.2991 | 18450 | 0.0001 | - |
|
536 |
+
| 1.3026 | 18500 | 0.0001 | - |
|
537 |
+
| 1.3062 | 18550 | 0.0001 | - |
|
538 |
+
| 1.3097 | 18600 | 0.0001 | - |
|
539 |
+
| 1.3132 | 18650 | 0.0001 | - |
|
540 |
+
| 1.3167 | 18700 | 0.0001 | - |
|
541 |
+
| 1.3202 | 18750 | 0.0001 | - |
|
542 |
+
| 1.3238 | 18800 | 0.0001 | - |
|
543 |
+
| 1.3273 | 18850 | 0.0001 | - |
|
544 |
+
| 1.3308 | 18900 | 0.0001 | - |
|
545 |
+
| 1.3343 | 18950 | 0.0001 | - |
|
546 |
+
| 1.3378 | 19000 | 0.0001 | - |
|
547 |
+
| 1.3414 | 19050 | 0.0001 | - |
|
548 |
+
| 1.3449 | 19100 | 0.0001 | - |
|
549 |
+
| 1.3484 | 19150 | 0.0001 | - |
|
550 |
+
| 1.3519 | 19200 | 0.0001 | - |
|
551 |
+
| 1.3554 | 19250 | 0.0001 | - |
|
552 |
+
| 1.3590 | 19300 | 0.0001 | - |
|
553 |
+
| 1.3625 | 19350 | 0.0001 | - |
|
554 |
+
| 1.3660 | 19400 | 0.0001 | - |
|
555 |
+
| 1.3695 | 19450 | 0.0001 | - |
|
556 |
+
| 1.3730 | 19500 | 0.0001 | - |
|
557 |
+
| 1.3766 | 19550 | 0.0001 | - |
|
558 |
+
| 1.3801 | 19600 | 0.0001 | - |
|
559 |
+
| 1.3836 | 19650 | 0.0001 | - |
|
560 |
+
| 1.3871 | 19700 | 0.0001 | - |
|
561 |
+
| 1.3906 | 19750 | 0.0001 | - |
|
562 |
+
| 1.3942 | 19800 | 0.0001 | - |
|
563 |
+
| 1.3977 | 19850 | 0.0001 | - |
|
564 |
+
| 1.4012 | 19900 | 0.0001 | - |
|
565 |
+
| 1.4047 | 19950 | 0.0001 | - |
|
566 |
+
| 1.4083 | 20000 | 0.0001 | - |
|
567 |
+
| 1.4118 | 20050 | 0.0001 | - |
|
568 |
+
| 1.4153 | 20100 | 0.0001 | - |
|
569 |
+
| 1.4188 | 20150 | 0.0001 | - |
|
570 |
+
| 1.4223 | 20200 | 0.0001 | - |
|
571 |
+
| 1.4259 | 20250 | 0.0001 | - |
|
572 |
+
| 1.4294 | 20300 | 0.0001 | - |
|
573 |
+
| 1.4329 | 20350 | 0.0001 | - |
|
574 |
+
| 1.4364 | 20400 | 0.0 | - |
|
575 |
+
| 1.4399 | 20450 | 0.0001 | - |
|
576 |
+
| 1.4435 | 20500 | 0.0001 | - |
|
577 |
+
| 1.4470 | 20550 | 0.0001 | - |
|
578 |
+
| 1.4505 | 20600 | 0.0001 | - |
|
579 |
+
| 1.4540 | 20650 | 0.0001 | - |
|
580 |
+
| 1.4575 | 20700 | 0.0001 | - |
|
581 |
+
| 1.4611 | 20750 | 0.0001 | - |
|
582 |
+
| 1.4646 | 20800 | 0.0001 | - |
|
583 |
+
| 1.4681 | 20850 | 0.0 | - |
|
584 |
+
| 1.4716 | 20900 | 0.0001 | - |
|
585 |
+
| 1.4751 | 20950 | 0.0001 | - |
|
586 |
+
| 1.4787 | 21000 | 0.0 | - |
|
587 |
+
| 1.4822 | 21050 | 0.0001 | - |
|
588 |
+
| 1.4857 | 21100 | 0.0001 | - |
|
589 |
+
| 1.4892 | 21150 | 0.0001 | - |
|
590 |
+
| 1.4927 | 21200 | 0.0001 | - |
|
591 |
+
| 1.4963 | 21250 | 0.0001 | - |
|
592 |
+
| 1.4998 | 21300 | 0.0001 | - |
|
593 |
+
| 1.5033 | 21350 | 0.0 | - |
|
594 |
+
| 1.5068 | 21400 | 0.0001 | - |
|
595 |
+
| 1.5104 | 21450 | 0.0001 | - |
|
596 |
+
| 1.5139 | 21500 | 0.0001 | - |
|
597 |
+
| 1.5174 | 21550 | 0.0 | - |
|
598 |
+
| 1.5209 | 21600 | 0.0001 | - |
|
599 |
+
| 1.5244 | 21650 | 0.0001 | - |
|
600 |
+
| 1.5280 | 21700 | 0.0001 | - |
|
601 |
+
| 1.5315 | 21750 | 0.0001 | - |
|
602 |
+
| 1.5350 | 21800 | 0.0001 | - |
|
603 |
+
| 1.5385 | 21850 | 0.0001 | - |
|
604 |
+
| 1.5420 | 21900 | 0.0 | - |
|
605 |
+
| 1.5456 | 21950 | 0.0001 | - |
|
606 |
+
| 1.5491 | 22000 | 0.0001 | - |
|
607 |
+
| 1.5526 | 22050 | 0.0001 | - |
|
608 |
+
| 1.5561 | 22100 | 0.0001 | - |
|
609 |
+
| 1.5596 | 22150 | 0.0001 | - |
|
610 |
+
| 1.5632 | 22200 | 0.0001 | - |
|
611 |
+
| 1.5667 | 22250 | 0.0 | - |
|
612 |
+
| 1.5702 | 22300 | 0.0 | - |
|
613 |
+
| 1.5737 | 22350 | 0.0001 | - |
|
614 |
+
| 1.5772 | 22400 | 0.0001 | - |
|
615 |
+
| 1.5808 | 22450 | 0.0001 | - |
|
616 |
+
| 1.5843 | 22500 | 0.0001 | - |
|
617 |
+
| 1.5878 | 22550 | 0.0001 | - |
|
618 |
+
| 1.5913 | 22600 | 0.0001 | - |
|
619 |
+
| 1.5948 | 22650 | 0.0001 | - |
|
620 |
+
| 1.5984 | 22700 | 0.0 | - |
|
621 |
+
| 1.6019 | 22750 | 0.0001 | - |
|
622 |
+
| 1.6054 | 22800 | 0.0001 | - |
|
623 |
+
| 1.6089 | 22850 | 0.0001 | - |
|
624 |
+
| 1.6124 | 22900 | 0.0001 | - |
|
625 |
+
| 1.6160 | 22950 | 0.0001 | - |
|
626 |
+
| 1.6195 | 23000 | 0.0001 | - |
|
627 |
+
| 1.6230 | 23050 | 0.0001 | - |
|
628 |
+
| 1.6265 | 23100 | 0.0001 | - |
|
629 |
+
| 1.6301 | 23150 | 0.0 | - |
|
630 |
+
| 1.6336 | 23200 | 0.0001 | - |
|
631 |
+
| 1.6371 | 23250 | 0.0001 | - |
|
632 |
+
| 1.6406 | 23300 | 0.0 | - |
|
633 |
+
| 1.6441 | 23350 | 0.0001 | - |
|
634 |
+
| 1.6477 | 23400 | 0.0 | - |
|
635 |
+
| 1.6512 | 23450 | 0.0001 | - |
|
636 |
+
| 1.6547 | 23500 | 0.0 | - |
|
637 |
+
| 1.6582 | 23550 | 0.0001 | - |
|
638 |
+
| 1.6617 | 23600 | 0.0001 | - |
|
639 |
+
| 1.6653 | 23650 | 0.0 | - |
|
640 |
+
| 1.6688 | 23700 | 0.0 | - |
|
641 |
+
| 1.6723 | 23750 | 0.0001 | - |
|
642 |
+
| 1.6758 | 23800 | 0.0001 | - |
|
643 |
+
| 1.6793 | 23850 | 0.0 | - |
|
644 |
+
| 1.6829 | 23900 | 0.0001 | - |
|
645 |
+
| 1.6864 | 23950 | 0.0 | - |
|
646 |
+
| 1.6899 | 24000 | 0.0 | - |
|
647 |
+
| 1.6934 | 24050 | 0.0 | - |
|
648 |
+
| 1.6969 | 24100 | 0.0001 | - |
|
649 |
+
| 1.7005 | 24150 | 0.0001 | - |
|
650 |
+
| 1.7040 | 24200 | 0.0001 | - |
|
651 |
+
| 1.7075 | 24250 | 0.0001 | - |
|
652 |
+
| 1.7110 | 24300 | 0.0001 | - |
|
653 |
+
| 1.7145 | 24350 | 0.0001 | - |
|
654 |
+
| 1.7181 | 24400 | 0.0001 | - |
|
655 |
+
| 1.7216 | 24450 | 0.0 | - |
|
656 |
+
| 1.7251 | 24500 | 0.0001 | - |
|
657 |
+
| 1.7286 | 24550 | 0.0 | - |
|
658 |
+
| 1.7322 | 24600 | 0.0001 | - |
|
659 |
+
| 1.7357 | 24650 | 0.0001 | - |
|
660 |
+
| 1.7392 | 24700 | 0.0 | - |
|
661 |
+
| 1.7427 | 24750 | 0.0001 | - |
|
662 |
+
| 1.7462 | 24800 | 0.0001 | - |
|
663 |
+
| 1.7498 | 24850 | 0.0001 | - |
|
664 |
+
| 1.7533 | 24900 | 0.0 | - |
|
665 |
+
| 1.7568 | 24950 | 0.0 | - |
|
666 |
+
| 1.7603 | 25000 | 0.0001 | - |
|
667 |
+
| 1.7638 | 25050 | 0.0001 | - |
|
668 |
+
| 1.7674 | 25100 | 0.0001 | - |
|
669 |
+
| 1.7709 | 25150 | 0.0001 | - |
|
670 |
+
| 1.7744 | 25200 | 0.0 | - |
|
671 |
+
| 1.7779 | 25250 | 0.0001 | - |
|
672 |
+
| 1.7814 | 25300 | 0.0 | - |
|
673 |
+
| 1.7850 | 25350 | 0.0 | - |
|
674 |
+
| 1.7885 | 25400 | 0.0 | - |
|
675 |
+
| 1.7920 | 25450 | 0.0 | - |
|
676 |
+
| 1.7955 | 25500 | 0.0 | - |
|
677 |
+
| 1.7990 | 25550 | 0.0 | - |
|
678 |
+
| 1.8026 | 25600 | 0.0001 | - |
|
679 |
+
| 1.8061 | 25650 | 0.0 | - |
|
680 |
+
| 1.8096 | 25700 | 0.0001 | - |
|
681 |
+
| 1.8131 | 25750 | 0.0001 | - |
|
682 |
+
| 1.8166 | 25800 | 0.0 | - |
|
683 |
+
| 1.8202 | 25850 | 0.0 | - |
|
684 |
+
| 1.8237 | 25900 | 0.0 | - |
|
685 |
+
| 1.8272 | 25950 | 0.0 | - |
|
686 |
+
| 1.8307 | 26000 | 0.0001 | - |
|
687 |
+
| 1.8342 | 26050 | 0.0 | - |
|
688 |
+
| 1.8378 | 26100 | 0.0 | - |
|
689 |
+
| 1.8413 | 26150 | 0.0 | - |
|
690 |
+
| 1.8448 | 26200 | 0.0 | - |
|
691 |
+
| 1.8483 | 26250 | 0.0 | - |
|
692 |
+
| 1.8519 | 26300 | 0.0 | - |
|
693 |
+
| 1.8554 | 26350 | 0.0001 | - |
|
694 |
+
| 1.8589 | 26400 | 0.0 | - |
|
695 |
+
| 1.8624 | 26450 | 0.0 | - |
|
696 |
+
| 1.8659 | 26500 | 0.0 | - |
|
697 |
+
| 1.8695 | 26550 | 0.0 | - |
|
698 |
+
| 1.8730 | 26600 | 0.0 | - |
|
699 |
+
| 1.8765 | 26650 | 0.0 | - |
|
700 |
+
| 1.8800 | 26700 | 0.0 | - |
|
701 |
+
| 1.8835 | 26750 | 0.0001 | - |
|
702 |
+
| 1.8871 | 26800 | 0.0 | - |
|
703 |
+
| 1.8906 | 26850 | 0.0 | - |
|
704 |
+
| 1.8941 | 26900 | 0.0 | - |
|
705 |
+
| 1.8976 | 26950 | 0.0 | - |
|
706 |
+
| 1.9011 | 27000 | 0.0001 | - |
|
707 |
+
| 1.9047 | 27050 | 0.0 | - |
|
708 |
+
| 1.9082 | 27100 | 0.0 | - |
|
709 |
+
| 1.9117 | 27150 | 0.0 | - |
|
710 |
+
| 1.9152 | 27200 | 0.0001 | - |
|
711 |
+
| 1.9187 | 27250 | 0.0 | - |
|
712 |
+
| 1.9223 | 27300 | 0.0001 | - |
|
713 |
+
| 1.9258 | 27350 | 0.0 | - |
|
714 |
+
| 1.9293 | 27400 | 0.0 | - |
|
715 |
+
| 1.9328 | 27450 | 0.0 | - |
|
716 |
+
| 1.9363 | 27500 | 0.0 | - |
|
717 |
+
| 1.9399 | 27550 | 0.0 | - |
|
718 |
+
| 1.9434 | 27600 | 0.0 | - |
|
719 |
+
| 1.9469 | 27650 | 0.0 | - |
|
720 |
+
| 1.9504 | 27700 | 0.0 | - |
|
721 |
+
| 1.9540 | 27750 | 0.0001 | - |
|
722 |
+
| 1.9575 | 27800 | 0.0 | - |
|
723 |
+
| 1.9610 | 27850 | 0.0 | - |
|
724 |
+
| 1.9645 | 27900 | 0.0 | - |
|
725 |
+
| 1.9680 | 27950 | 0.0001 | - |
|
726 |
+
| 1.9716 | 28000 | 0.0 | - |
|
727 |
+
| 1.9751 | 28050 | 0.0 | - |
|
728 |
+
| 1.9786 | 28100 | 0.0001 | - |
|
729 |
+
| 1.9821 | 28150 | 0.0 | - |
|
730 |
+
| 1.9856 | 28200 | 0.0 | - |
|
731 |
+
| 1.9892 | 28250 | 0.0 | - |
|
732 |
+
| 1.9927 | 28300 | 0.0 | - |
|
733 |
+
| 1.9962 | 28350 | 0.0 | - |
|
734 |
+
| 1.9997 | 28400 | 0.0001 | - |
|
735 |
+
| **2.0** | **28404** | **-** | **0.0076** |
|
736 |
+
|
737 |
+
* The bold row denotes the saved checkpoint.
|
738 |
+
### Framework Versions
|
739 |
+
- Python: 3.11.9
|
740 |
+
- SetFit: 1.1.0.dev0
|
741 |
+
- Sentence Transformers: 3.0.1
|
742 |
+
- Transformers: 4.44.2
|
743 |
+
- PyTorch: 2.4.0+cu121
|
744 |
+
- Datasets: 2.21.0
|
745 |
+
- Tokenizers: 0.19.1
|
746 |
+
|
747 |
+
## Citation
|
748 |
+
|
749 |
+
### BibTeX
|
750 |
+
```bibtex
|
751 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
752 |
+
doi = {10.48550/ARXIV.2209.11055},
|
753 |
+
url = {https://arxiv.org/abs/2209.11055},
|
754 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
755 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
756 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
757 |
+
publisher = {arXiv},
|
758 |
+
year = {2022},
|
759 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
760 |
+
}
|
761 |
+
```
|
762 |
+
|
763 |
+
<!--
|
764 |
+
## Glossary
|
765 |
+
|
766 |
+
*Clearly define terms in order to be accessible across audiences.*
|
767 |
+
-->
|
768 |
+
|
769 |
+
<!--
|
770 |
+
## Model Card Authors
|
771 |
+
|
772 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
773 |
+
-->
|
774 |
+
|
775 |
+
<!--
|
776 |
+
## Model Card Contact
|
777 |
+
|
778 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
779 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bge-large-en-v1.5-brahmaputra-iter-8-2-epoch/step_28404",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"Tablejoin",
|
5 |
+
"Rejection",
|
6 |
+
"Aggregation",
|
7 |
+
"Lookup",
|
8 |
+
"Generalreply",
|
9 |
+
"Viewtables",
|
10 |
+
"Lookup_1"
|
11 |
+
]
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7896502d148fc80505ee74565902e6e586458af3c3dd1f071c47aee6d8fb545
|
3 |
+
size 1340612432
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bdf1aa3e5c8690e9e906c7d840b07c61e9c575b43a49297257607eb32b49efb
|
3 |
+
size 58575
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|