yocabon commited on
Commit
a3c4503
·
verified ·
1 Parent(s): 8991601

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,9 +1,58 @@
1
  ---
2
  tags:
 
3
  - pytorch_model_hub_mixin
4
  - model_hub_mixin
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using ****:
8
- - Repo: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
+ - image-to-3d
4
  - pytorch_model_hub_mixin
5
  - model_hub_mixin
6
+ library_name: mast3r
7
+ repo_url: https://github.com/naver/mast3r
8
  ---
9
 
10
+
11
+ ## Grounding Image Matching in 3D with MASt3R
12
+
13
+ ```bibtex
14
+ @misc{mast3r_arxiv24,
15
+ title={Grounding Image Matching in 3D with MASt3R},
16
+ author={Vincent Leroy and Yohann Cabon and Jerome Revaud},
17
+ year={2024},
18
+ eprint={TODO},
19
+ archivePrefix={arXiv},
20
+ primaryClass={cs.CV}
21
+ }
22
+
23
+ @inproceedings{dust3r_cvpr24,
24
+ title={DUSt3R: Geometric 3D Vision Made Easy},
25
+ author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
26
+ booktitle = {CVPR},
27
+ year = {2024}
28
+ }
29
+ ```
30
+
31
+ # License
32
+ The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/mast3r/blob/main/LICENSE) for more information.
33
+ For the model, make sure to agree to the license of all the training datasets in addition to CC-BY-NC-SA 4.0, in particular, the [mapfree dataset license](https://research.nianticlabs.com/mapfree-reloc-benchmark/dataset) is very restrictive.
34
+ For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0.
35
+ The mapfree dataset license in particular is very restrictive. For more information, check [CHECKPOINTS_NOTICE](https://github.com/naver/mast3r/blob/main/CHECKPOINTS_NOTICE).
36
+
37
+ # Model info
38
+
39
+ Gihub page: https://github.com/naver/mast3r/
40
+
41
+ | Modelname | Training resolutions | Head | Encoder | Decoder |
42
+ |-------------|----------------------|------|---------|---------|
43
+ | MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric | 512x384, 512x336, 512x288, 512x256, 512x160 | CatMLP+DPT | ViT-L | ViT-B |
44
+
45
+ # How to use
46
+
47
+ First, [install mast3r](https://github.com/naver/mast3r?tab=readme-ov-file#installation).
48
+ To load the model:
49
+
50
+ ```python
51
+ from mast3r.model import AsymmetricMASt3R
52
+ import torch
53
+
54
+ model = AsymmetricMASt3R.from_pretrained("naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric")
55
+
56
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
57
+ model.to(device)
58
+ ```