3outeille HF staff commited on
Commit
6266f26
·
verified ·
1 Parent(s): 8a7f4ec

Upload llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16

Browse files
llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/bench.slurm ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --job-name=bench_cluster
4
+ #SBATCH --time=02:00:00
5
+ #SBATCH --partition=hopper-prod
6
+ #SBATCH --nodes=1
7
+ #SBATCH --gres=gpu:8
8
+ #SBATCH --qos=normal
9
+ #SBATCH --ntasks-per-node=1
10
+ #SBATCH --cpus-per-task=96
11
+ #SBATCH --exclusive
12
+ #SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out
13
+ #SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out
14
+
15
+ # Function to update status based on squeue output
16
+ update_status() {
17
+ job_id=$1
18
+ status_file=$2
19
+ # For unknown reasons, it doenst update status for pending. It only works for running
20
+ while true; do
21
+ job_status=$(squeue --job $job_id --noheader --format=%T)
22
+ echo "Job status: $job_status"
23
+ if [ -z "$job_status" ]; then
24
+ # Job has finished or is not found
25
+ break
26
+ elif [ "$job_status" = "RUNNING" ]; then
27
+ printf "running" > $status_file
28
+ break
29
+ fi
30
+ sleep 10
31
+ done
32
+ }
33
+
34
+ # Misc initializations.
35
+ echo "========================"
36
+ echo "START TIME: $(date)"
37
+ source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
38
+ conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
39
+ echo python3 version = $(python3 --version)
40
+ echo "========================"
41
+
42
+ # Slurm stuff
43
+ export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
44
+ export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
45
+ export MASTER_PORT=$((1024 + RANDOM % 64511))
46
+
47
+ export TMPDIR=/scratch
48
+ export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
49
+ export CUBLAS_WORKSPACE_CONFIG=":4096:8"
50
+ export CUDA_DEVICE_MAX_CONNECTIONS="1"
51
+
52
+ huggingface-cli login --token $HUGGINGFACE_TOKEN
53
+
54
+
55
+ NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
56
+ CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/config.yaml"
57
+
58
+ LAUNCHER="torchrun \
59
+ --nproc_per_node 8 \
60
+ --nnodes 1 \
61
+ --rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
62
+ --rdzv_backend c10d \
63
+ --max_restarts 0 \
64
+ --tee 3 \
65
+ --node_rank ${SLURM_PROCID}"
66
+
67
+ # Checkout the bench_cluster branch
68
+ cd $NANOTRON_REPO
69
+ git checkout bench_cluster
70
+ cd ..
71
+ # Get the current job ID
72
+ job_id=${SLURM_JOB_ID}
73
+
74
+ # Update status to "pending" or "running" in the background
75
+ update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt &
76
+
77
+ # Run the main command
78
+ srun -u $LAUNCHER $CMD
79
+ exit_status=$?
80
+
81
+ # Update status based on the exit status of `srun`
82
+ if [ $exit_status -eq 0 ]; then
83
+ printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt
84
+ else
85
+ if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out; then
86
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt
87
+ elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out; then
88
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt
89
+ elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out; then
90
+ printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt
91
+ else
92
+ printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt
93
+ fi
94
+ fi
95
+
96
+ # Run the report script if the job completed successfully
97
+ if [ $exit_status -eq 0 ]; then
98
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16 --is_logs
99
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16 --is_profiler
100
+ fi
101
+
102
+
103
+ # Push to hub the folder using huggingface_cli
104
+ huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16 llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16 --commit-message "Upload llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16"
105
+
106
+ # Verify the upload
107
+ if [ $? -eq 0 ]; then
108
+ echo "Uploading to Huggingface Hub successful"
109
+ else
110
+ echo "Failed to upload to Huggingface Hub"
111
+ fi
llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/config.yaml ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ general:
2
+ project: bench_cluster
3
+ seed: 42
4
+ model:
5
+ ddp_bucket_cap_mb: 25
6
+ dtype: bfloat16
7
+ init_method:
8
+ std: 0.025
9
+ make_vocab_size_divisible_by: 1
10
+ model_config:
11
+ bos_token_id: 1
12
+ eos_token_id: 2
13
+ hidden_act: silu
14
+ hidden_size: 2048
15
+ initializer_range: 0.02
16
+ intermediate_size: 4096
17
+ is_llama_config: true
18
+ max_position_embeddings: 4096
19
+ num_attention_heads: 32
20
+ num_hidden_layers: 24
21
+ num_key_value_heads: 32
22
+ pad_token_id: null
23
+ pretraining_tp: 1
24
+ rms_norm_eps: 1.0e-05
25
+ rope_scaling: null
26
+ rope_theta: 10000.0
27
+ tie_word_embeddings: true
28
+ use_cache: true
29
+ vocab_size: 50257
30
+ optimizer:
31
+ accumulate_grad_in_fp32: true
32
+ clip_grad: 1.0
33
+ learning_rate_scheduler:
34
+ learning_rate: 0.0001
35
+ lr_decay_style: linear
36
+ lr_warmup_style: linear
37
+ lr_warmup_steps: 1
38
+ min_decay_lr: 1.0e-05
39
+ optimizer_factory:
40
+ adam_beta1: 0.9
41
+ adam_beta2: 0.95
42
+ adam_eps: 1.0e-08
43
+ name: adamW
44
+ torch_adam_is_fused: true
45
+ weight_decay: 0.01
46
+ zero_stage: 1
47
+ parallelism:
48
+ dp: 8
49
+ expert_parallel_size: 1
50
+ pp: 1
51
+ pp_engine: 1f1b
52
+ tp: 1
53
+ tp_linear_async_communication: false
54
+ tp_mode: REDUCE_SCATTER
55
+ profiler:
56
+ profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16
57
+ tokenizer:
58
+ tokenizer_max_length: null
59
+ tokenizer_name_or_path: openai-community/gpt2
60
+ tokenizer_revision: null
61
+ data_stages:
62
+ - name: Training Stage
63
+ start_training_step: 1
64
+ data:
65
+ dataset:
66
+ dataset_overwrite_cache: false
67
+ dataset_processing_num_proc_per_process: 64
68
+ hf_dataset_config_name: null
69
+ hf_dataset_or_datasets: roneneldan/TinyStories
70
+ hf_dataset_splits: train
71
+ text_column_name: text
72
+ num_loading_workers: 0
73
+ seed: 42
74
+ lighteval: null
75
+ tokens:
76
+ train_steps: 20
77
+ val_check_interval: -1
78
+ batch_accumulation_per_replica: 8
79
+ limit_test_batches: 0
80
+ limit_val_batches: 0
81
+ micro_batch_size: 16
82
+ sequence_length: 4096
83
+ logging:
84
+ iteration_step_info_interval: 1
85
+ log_level: info
86
+ log_level_replica: info
87
+ checkpoints:
88
+ checkpoint_interval: 100000
89
+ checkpoints_path: /dev/null
90
+ resume_checkpoint_path: null
llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/log.out ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ========================
2
+ START TIME: Wed Jul 3 22:49:00 UTC 2024
3
+ python3 version = Python 3.10.14
4
+ ========================
5
+ The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
6
+ Token is valid (permission: write).
7
+ Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
8
+ Login successful
9
+ Already on 'bench_cluster'
10
+ M examples/config_tiny_llama.py
11
+ M examples/config_tiny_llama.yaml
12
+ M examples/train_tiny_llama.sh
13
+ M src/nanotron/models/llama.py
14
+ M src/nanotron/trainer.py
15
+ Your branch is up to date with 'origin/bench_cluster'.
16
+ Job status: RUNNING
17
+ W0703 22:49:02.624000 139633926510400 torch/distributed/run.py:757]
18
+ W0703 22:49:02.624000 139633926510400 torch/distributed/run.py:757] *****************************************
19
+ W0703 22:49:02.624000 139633926510400 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20
+ W0703 22:49:02.624000 139633926510400 torch/distributed/run.py:757] *****************************************
21
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config:
22
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config(general=GeneralArgs(project='bench_cluster',
23
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: run='%date_%jobid',
24
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
25
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: step=None,
26
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: consumed_train_samples=None,
27
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: benchmark_csv_path=None,
28
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ignore_sanity_checks=True),
29
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: parallelism=ParallelismArgs(dp=8,
30
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp=1,
31
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp=1,
32
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fc9030b48b0>,
33
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
34
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_linear_async_communication=False,
35
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: expert_parallel_size=1),
36
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
37
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
38
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
39
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
40
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
41
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
42
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
43
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
44
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
45
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
46
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
47
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
48
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
49
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
50
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
51
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
52
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
53
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
54
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50257),
55
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: init_method=RandomInit(std=0.025),
56
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dtype=torch.bfloat16,
57
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: make_vocab_size_divisible_by=1,
58
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ddp_bucket_cap_mb=25),
59
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
60
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_revision=None,
61
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_max_length=None),
62
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
63
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoint_interval=100000,
64
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: save_initial_state=False,
65
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: resume_checkpoint_path=None,
66
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints_path_is_shared_file_system=False),
67
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: logging=LoggingArgs(log_level='info',
68
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: log_level_replica='info',
69
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: iteration_step_info_interval=1),
70
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokens=TokensArgs(sequence_length=4096,
71
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: train_steps=20,
72
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: micro_batch_size=16,
73
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: batch_accumulation_per_replica=8,
74
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: val_check_interval=-1,
75
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_val_batches=0,
76
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_test_batches=0),
77
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
78
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta1=0.9,
79
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta2=0.95,
80
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: torch_adam_is_fused=True,
81
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: name='adamW'),
82
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: zero_stage=1,
83
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: weight_decay=0.01,
84
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: clip_grad=1.0,
85
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: accumulate_grad_in_fp32=True,
86
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
87
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_steps=1,
88
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_style='linear',
89
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_style='linear',
90
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_steps=19,
91
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_starting_step=None,
92
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: min_decay_lr=1e-05)),
93
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data_stages=[DatasetStageArgs(name='Training Stage',
94
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: start_training_step=1,
95
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
96
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_splits='train',
97
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_config_name=None,
98
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_processing_num_proc_per_process=64,
99
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_overwrite_cache=False,
100
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: text_column_name='text'),
101
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
102
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_loading_workers=0))],
103
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16')),
104
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lighteval=None)
105
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Model Config:
106
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: LlamaConfig(bos_token_id=1,
107
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
108
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
109
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
110
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
111
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
112
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
113
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
114
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
115
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
116
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
117
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
118
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
119
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
120
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
121
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
122
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
123
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
124
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50257)
125
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Building model..
126
+ [default0]:07/03/2024 22:49:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Setting PP block ranks...
127
+ [default1]:07/03/2024 22:49:27 [INFO|DP=1|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
128
+ [default0]:07/03/2024 22:49:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Total number of parameters: 1.11G (2116.51MiB)
129
+ [default0]:07/03/2024 22:49:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Local number of parameters: 1.11G (2116.51MiB)
130
+ [default0]:07/03/2024 22:49:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 2140.53MiB. Peak allocated: 2338.88MiB Peak reserved: 2392.00MiB
131
+ [default0]:07/03/2024 22:49:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
132
+ [default0]:07/03/2024 22:49:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Parametrizing model parameters using StandardParametrizator
133
+ [default5]:07/03/2024 22:49:27 [INFO|DP=5|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
134
+ [default6]:07/03/2024 22:49:27 [INFO|DP=6|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
135
+ [default4]:07/03/2024 22:49:27 [INFO|DP=4|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
136
+ [default2]:07/03/2024 22:49:27 [INFO|DP=2|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
137
+ [default3]:07/03/2024 22:49:27 [INFO|DP=3|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
138
+ [default7]:07/03/2024 22:49:27 [INFO|DP=7|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
139
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Optimizer Building] Using LearningRateForSP as learning rate
140
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] Size of optimizer params per rank:
141
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 0 has 139M out of 1.11G (12.50%) params' optimizer states
142
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 1 has 139M out of 1.11G (12.50%) params' optimizer states
143
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 2 has 139M out of 1.11G (12.50%) params' optimizer states
144
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 3 has 139M out of 1.11G (12.50%) params' optimizer states
145
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 4 has 139M out of 1.11G (12.50%) params' optimizer states
146
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 5 has 139M out of 1.11G (12.50%) params' optimizer states
147
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 6 has 139M out of 1.11G (12.50%) params' optimizer states
148
+ [default0]:07/03/2024 22:49:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 7 has 139M out of 1.11G (12.50%) params' optimizer states
149
+ [default0]:07/03/2024 22:49:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
150
+ [default0]:07/03/2024 22:49:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Using `datasets` library
151
+ [default0]:07/03/2024 22:49:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
152
+ [default0]:07/03/2024 22:49:35 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
153
+ [default0]:Repo card metadata block was not found. Setting CardData to empty.
154
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] There are 1 training stages
155
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Stage Training Stage] start from step 1
156
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:
157
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Start training] datetime: 2024-07-03 22:49:36.207595 | mbs: 16 | grad_accum: 8 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
158
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
159
+ [default0]:07/03/2024 22:49:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Memory usage: 6904.53MiB. Peak allocated 6904.53MiB. Peak reserved: 7156.00MiB
160
+ [default1]:07/03/2024 22:49:36 [WARNING|DP=1|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
161
+ [default5]:07/03/2024 22:49:36 [WARNING|DP=5|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
162
+ [default1]:Repo card metadata block was not found. Setting CardData to empty.
163
+ [default4]:07/03/2024 22:49:36 [WARNING|DP=4|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
164
+ [default6]:Repo card metadata block was not found. Setting CardData to empty.
165
+ [default7]:Repo card metadata block was not found. Setting CardData to empty.
166
+ [default6]:07/03/2024 22:49:36 [WARNING|DP=6|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
167
+ [default7]:07/03/2024 22:49:36 [WARNING|DP=7|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
168
+ [default3]:Repo card metadata block was not found. Setting CardData to empty.
169
+ [default2]:07/03/2024 22:49:36 [WARNING|DP=2|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
170
+ [default2]:Repo card metadata block was not found. Setting CardData to empty.
171
+ [default4]:Repo card metadata block was not found. Setting CardData to empty.
172
+ [default3]:07/03/2024 22:49:36 [WARNING|DP=3|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
173
+ [default5]:Repo card metadata block was not found. Setting CardData to empty.
174
+ [default0]:[rank0]: Traceback (most recent call last):
175
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
176
+ [default0]:[rank0]: trainer.train(dataloader)
177
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
178
+ [default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
179
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
180
+ [default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
181
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
182
+ [default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
183
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
184
+ [default0]:[rank0]: output = model(**micro_batch)
185
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
186
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
187
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
188
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
189
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
190
+ [default0]:[rank0]: sharded_logits = self.model(
191
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
192
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
193
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
194
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
195
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
196
+ [default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
197
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
198
+ [default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
199
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
200
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
201
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
202
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
203
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
204
+ [default0]:[rank0]: output = self.pp_block(**new_kwargs)
205
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
206
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
207
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
208
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
209
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
210
+ [default0]:[rank0]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
211
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
212
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
213
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
214
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
215
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
216
+ [default0]:[rank0]: merged_states = self.gate_up_proj(hidden_states)
217
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
218
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
219
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
220
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
221
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
222
+ [default0]:[rank0]: return column_linear(
223
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
224
+ [default0]:[rank0]: return F.linear(input, weight, bias)
225
+ [default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU
226
+ [default1]:[rank1]: Traceback (most recent call last):
227
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
228
+ [default1]:[rank1]: trainer.train(dataloader)
229
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
230
+ [default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
231
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
232
+ [default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
233
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
234
+ [default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
235
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
236
+ [default1]:[rank1]: output = model(**micro_batch)
237
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
238
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
239
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
240
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
241
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
242
+ [default1]:[rank1]: sharded_logits = self.model(
243
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
244
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
245
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
246
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
247
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
248
+ [default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
249
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
250
+ [default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
251
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
252
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
253
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
254
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
255
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
256
+ [default1]:[rank1]: output = self.pp_block(**new_kwargs)
257
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
258
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
259
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
260
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
261
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
262
+ [default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
263
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
264
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
265
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
266
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
267
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
268
+ [default1]:[rank1]: merged_states = self.gate_up_proj(hidden_states)
269
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
270
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
271
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
272
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
273
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
274
+ [default1]:[rank1]: return column_linear(
275
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
276
+ [default1]:[rank1]: return F.linear(input, weight, bias)
277
+ [default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
278
+ [default7]:[rank7]: Traceback (most recent call last):
279
+ [default6]:[rank6]: Traceback (most recent call last):
280
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
281
+ [default3]:[rank3]: Traceback (most recent call last):
282
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
283
+ [default6]:[rank6]: trainer.train(dataloader)
284
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
285
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
286
+ [default7]:[rank7]: trainer.train(dataloader)
287
+ [default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
288
+ [default3]:[rank3]: trainer.train(dataloader)
289
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
290
+ [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
291
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
292
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
293
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
294
+ [default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
295
+ [default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
296
+ [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
297
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
298
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
299
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
300
+ [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
301
+ [default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
302
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
303
+ [default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
304
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
305
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
306
+ [default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
307
+ [default6]:[rank6]: output = model(**micro_batch)
308
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
309
+ [default7]:[rank7]: output = model(**micro_batch)
310
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
311
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
312
+ [default3]:[rank3]: output = model(**micro_batch)
313
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
314
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
315
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
316
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
317
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
318
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
319
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
320
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
321
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
322
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
323
+ [default7]:[rank7]: sharded_logits = self.model(
324
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
325
+ [default6]:[rank6]: sharded_logits = self.model(
326
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
327
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
328
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
329
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
330
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
331
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
332
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
333
+ [default4]:[rank4]: Traceback (most recent call last):
334
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
335
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
336
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
337
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
338
+ [default3]:[rank3]: sharded_logits = self.model(
339
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
340
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
341
+ [default4]:[rank4]: trainer.train(dataloader)
342
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
343
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
344
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
345
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
346
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
347
+ [default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
348
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
349
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
350
+ [default2]:[rank2]: Traceback (most recent call last):
351
+ [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
352
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
353
+ [default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
354
+ [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
355
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
356
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
357
+ [default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
358
+ [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
359
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
360
+ [default2]:[rank2]: trainer.train(dataloader)
361
+ [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
362
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
363
+ [default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
364
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
365
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
366
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
367
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
368
+ [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
369
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
370
+ [default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
371
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
372
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
373
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
374
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
375
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
376
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
377
+ [default4]:[rank4]: output = model(**micro_batch)
378
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
379
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
380
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
381
+ [default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
382
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
383
+ [default3]:[rank3]: output = self.pp_block(**new_kwargs)
384
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
385
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
386
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
387
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
388
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
389
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
390
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
391
+ [default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
392
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
393
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
394
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
395
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
396
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
397
+ [default2]:[rank2]: output = model(**micro_batch)
398
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
399
+ [default3]:[rank3]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
400
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
401
+ [default7]:[rank7]: output = self.pp_block(**new_kwargs)
402
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
403
+ [default6]:[rank6]: output = self.pp_block(**new_kwargs)
404
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
405
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
406
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
407
+ [default4]:[rank4]: sharded_logits = self.model(
408
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
409
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
410
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
411
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
412
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
413
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
414
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
415
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
416
+ [default3]:[rank3]: merged_states = self.gate_up_proj(hidden_states)
417
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
418
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
419
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
420
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
421
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
422
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
423
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
424
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
425
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
426
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
427
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
428
+ [default6]:[rank6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
429
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
430
+ [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
431
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
432
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
433
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
434
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
435
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
436
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
437
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
438
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
439
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
440
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
441
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
442
+ [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
443
+ [default3]:[rank3]: return column_linear(
444
+ [default2]:[rank2]: sharded_logits = self.model(
445
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
446
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
447
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
448
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
449
+ [default7]:[rank7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
450
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
451
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
452
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
453
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
454
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
455
+ [default3]:[rank3]: return F.linear(input, weight, bias)
456
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
457
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
458
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
459
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
460
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
461
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
462
+ [default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
463
+ [default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
464
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
465
+ [default6]:[rank6]: merged_states = self.gate_up_proj(hidden_states)
466
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
467
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
468
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
469
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
470
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
471
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
472
+ [default7]:[rank7]: merged_states = self.gate_up_proj(hidden_states)
473
+ [default4]:[rank4]: output = self.pp_block(**new_kwargs)
474
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
475
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
476
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
477
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
478
+ [default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
479
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
480
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
481
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
482
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
483
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
484
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
485
+ [default6]:[rank6]: return column_linear(
486
+ [default7]:[rank7]: return column_linear(
487
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
488
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
489
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
490
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
491
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
492
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
493
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
494
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
495
+ [default2]:[rank2]: output = self.pp_block(**new_kwargs)
496
+ [default7]:[rank7]: return F.linear(input, weight, bias)
497
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
498
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
499
+ [default6]:[rank6]: return F.linear(input, weight, bias)
500
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
501
+ [default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 1009.94 MiB is free. Including non-PyTorch memory, this process has 78.33 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
502
+ [default4]:[rank4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
503
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
504
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
505
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
506
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
507
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
508
+ [default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
509
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
510
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
511
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
512
+ [default4]:[rank4]: merged_states = self.gate_up_proj(hidden_states)
513
+ [default2]:[rank2]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
514
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
515
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
516
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
517
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
518
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
519
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
520
+ [default4]:[rank4]: return column_linear(
521
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
522
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
523
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
524
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
525
+ [default4]:[rank4]: return F.linear(input, weight, bias)
526
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
527
+ [default2]:[rank2]: merged_states = self.gate_up_proj(hidden_states)
528
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
529
+ [default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
530
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
531
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
532
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
533
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
534
+ [default2]:[rank2]: return column_linear(
535
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
536
+ [default2]:[rank2]: return F.linear(input, weight, bias)
537
+ [default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
538
+ [default5]:[rank5]: Traceback (most recent call last):
539
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
540
+ [default5]:[rank5]: trainer.train(dataloader)
541
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
542
+ [default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
543
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
544
+ [default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
545
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
546
+ [default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
547
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
548
+ [default5]:[rank5]: output = model(**micro_batch)
549
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
550
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
551
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
552
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
553
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
554
+ [default5]:[rank5]: sharded_logits = self.model(
555
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
556
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
557
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
558
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
559
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
560
+ [default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
561
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
562
+ [default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
563
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
564
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
565
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
566
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
567
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
568
+ [default5]:[rank5]: output = self.pp_block(**new_kwargs)
569
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
570
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
571
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
572
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
573
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
574
+ [default5]:[rank5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
575
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
576
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
577
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
578
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
579
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
580
+ [default5]:[rank5]: merged_states = self.gate_up_proj(hidden_states)
581
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
582
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
583
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
584
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
585
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
586
+ [default5]:[rank5]: return column_linear(
587
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
588
+ [default5]:[rank5]: return F.linear(input, weight, bias)
589
+ [default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 289.94 MiB is free. Including non-PyTorch memory, this process has 79.04 GiB memory in use. Of the allocated memory 66.89 GiB is allocated by PyTorch, and 417.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
590
+ W0703 22:49:42.779000 139633926510400 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1032681 closing signal SIGTERM
591
+ E0703 22:49:42.991000 139633926510400 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1032676) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
592
+ Traceback (most recent call last):
593
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
594
+ sys.exit(main())
595
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
596
+ return f(*args, **kwargs)
597
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
598
+ run(args)
599
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
600
+ elastic_launch(
601
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
602
+ return launch_agent(self._config, self._entrypoint, list(args))
603
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
604
+ raise ChildFailedError(
605
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
606
+ ============================================================
607
+ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
608
+ ------------------------------------------------------------
609
+ Failures:
610
+ [1]:
611
+ time : 2024-07-03_22:49:42
612
+ host : ip-26-0-161-178.ec2.internal
613
+ rank : 1 (local_rank: 1)
614
+ exitcode : 1 (pid: 1032677)
615
+ error_file: <N/A>
616
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
617
+ [2]:
618
+ time : 2024-07-03_22:49:42
619
+ host : ip-26-0-161-178.ec2.internal
620
+ rank : 2 (local_rank: 2)
621
+ exitcode : 1 (pid: 1032678)
622
+ error_file: <N/A>
623
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
624
+ [3]:
625
+ time : 2024-07-03_22:49:42
626
+ host : ip-26-0-161-178.ec2.internal
627
+ rank : 3 (local_rank: 3)
628
+ exitcode : 1 (pid: 1032679)
629
+ error_file: <N/A>
630
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
631
+ [4]:
632
+ time : 2024-07-03_22:49:42
633
+ host : ip-26-0-161-178.ec2.internal
634
+ rank : 4 (local_rank: 4)
635
+ exitcode : 1 (pid: 1032680)
636
+ error_file: <N/A>
637
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
638
+ [5]:
639
+ time : 2024-07-03_22:49:42
640
+ host : ip-26-0-161-178.ec2.internal
641
+ rank : 6 (local_rank: 6)
642
+ exitcode : 1 (pid: 1032682)
643
+ error_file: <N/A>
644
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
645
+ [6]:
646
+ time : 2024-07-03_22:49:42
647
+ host : ip-26-0-161-178.ec2.internal
648
+ rank : 7 (local_rank: 7)
649
+ exitcode : 1 (pid: 1032683)
650
+ error_file: <N/A>
651
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
652
+ ------------------------------------------------------------
653
+ Root Cause (first observed failure):
654
+ [0]:
655
+ time : 2024-07-03_22:49:42
656
+ host : ip-26-0-161-178.ec2.internal
657
+ rank : 0 (local_rank: 0)
658
+ exitcode : 1 (pid: 1032676)
659
+ error_file: <N/A>
660
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
661
+ ============================================================
662
+ srun: error: ip-26-0-161-178: task 0: Exited with exit code 1
663
+ Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
llama-1B/8_GPUS/dp-8_tp-1_pp-1_mbz-16/status.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ oom