|
======================== |
|
START TIME: Tue Jul 2 16:22:58 UTC 2024 |
|
python3 version = Python 3.10.14 |
|
======================== |
|
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well. |
|
Token is valid (permission: write). |
|
OSError: [Errno 122] Disk quota exceeded |
|
|
|
During handling of the above exception, another exception occurred: |
|
|
|
Traceback (most recent call last): |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/huggingface-cli", line 8, in <module> |
|
sys.exit(main()) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/huggingface_hub/commands/huggingface_cli.py", line 51, in main |
|
service.run() |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/huggingface_hub/commands/user.py", line 98, in run |
|
login(token=self.args.token, add_to_git_credential=self.args.add_to_git_credential) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/huggingface_hub/_login.py", line 111, in login |
|
_login(token, add_to_git_credential=add_to_git_credential, write_permission=write_permission) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/huggingface_hub/_login.py", line 328, in _login |
|
path.write_text(token) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/pathlib.py", line 1154, in write_text |
|
with self.open(mode='w', encoding=encoding, errors=errors, newline=newline) as f: |
|
OSError: [Errno 122] Disk quota exceeded |
|
Already on 'bench_cluster' |
|
M examples/config_tiny_llama.py |
|
M examples/config_tiny_llama.yaml |
|
M examples/train_tiny_llama.sh |
|
M src/nanotron/models/llama.py |
|
M src/nanotron/trainer.py |
|
Your branch is up to date with 'origin/bench_cluster'. |
|
Job status: RUNNING |
|
W0702 16:23:00.555000 140654571476800 torch/distributed/run.py:757] |
|
W0702 16:23:00.555000 140654571476800 torch/distributed/run.py:757] ***************************************** |
|
W0702 16:23:00.555000 140654571476800 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. |
|
W0702 16:23:00.555000 140654571476800 torch/distributed/run.py:757] ***************************************** |
|
W0702 16:23:00.578000 140166684469056 torch/distributed/run.py:757] |
|
W0702 16:23:00.578000 140166684469056 torch/distributed/run.py:757] ***************************************** |
|
W0702 16:23:00.578000 140166684469056 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. |
|
W0702 16:23:00.578000 140166684469056 torch/distributed/run.py:757] ***************************************** |
|
[default0]:07/02/2024 16:23:18 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260) |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config: |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config(general=GeneralArgs(project='bench_cluster', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: run='%date_%jobid', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: step=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: consumed_train_samples=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: benchmark_csv_path=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ignore_sanity_checks=True), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: parallelism=ParallelismArgs(dp=4, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp=4, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fd02accc910>, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_linear_async_communication=False, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: expert_parallel_size=1), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: init_method=RandomInit(std=0.025), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dtype=torch.bfloat16, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: make_vocab_size_divisible_by=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ddp_bucket_cap_mb=25), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_revision=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_max_length=None), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoint_interval=100000, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: save_initial_state=False, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: resume_checkpoint_path=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints_path_is_shared_file_system=False), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: logging=LoggingArgs(log_level='info', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: log_level_replica='info', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration_step_info_interval=1), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokens=TokensArgs(sequence_length=4096, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: train_steps=20, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: micro_batch_size=4, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: batch_accumulation_per_replica=64, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: val_check_interval=-1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_val_batches=0, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_test_batches=0), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta1=0.9, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta2=0.95, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: torch_adam_is_fused=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: name='adamW'), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: zero_stage=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: weight_decay=0.01, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: clip_grad=1.0, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: accumulate_grad_in_fp32=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_steps=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_style='linear', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_style='linear', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_steps=19, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_starting_step=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: min_decay_lr=1e-05)), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data_stages=[DatasetStageArgs(name='Training Stage', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: start_training_step=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_splits='train', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_config_name=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_processing_num_proc_per_process=64, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_overwrite_cache=False, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: text_column_name='text'), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_loading_workers=32))], |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-4_tp-4_pp-1_mbz-4')), |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lighteval=None) |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Model Config: |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: LlamaConfig(bos_token_id=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu', |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True, |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260) |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Building model.. |
|
[default0]:07/02/2024 16:23:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Setting PP block ranks... |
|
[default0]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Total number of parameters: 1.11G (2117.09MiB) |
|
[default0]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) |
|
[default0]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB |
|
[default0]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided. |
|
[default0]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Parametrizing model parameters using StandardParametrizator |
|
[default3]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) |
|
[default3]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB |
|
[default3]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided. |
|
[default1]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) |
|
[default1]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB |
|
[default1]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided. |
|
[default2]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) |
|
[default2]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB |
|
[default2]:07/02/2024 16:23:31 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided. |
|
[default5]:07/02/2024 16:23:32 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided. |
|
[default6]:07/02/2024 16:23:32 [INFO|DP=1|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided. |
|
[default4]:07/02/2024 16:23:32 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided. |
|
[default7]:07/02/2024 16:23:32 [INFO|DP=1|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided. |
|
[default0]:07/02/2024 16:23:32 [INFO|DP=2|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default1]:07/02/2024 16:23:32 [INFO|DP=2|PP=0|TP=1|ip-26-0-171-56]: No checkpoint path provided. |
|
[default2]:07/02/2024 16:23:32 [INFO|DP=2|PP=0|TP=2|ip-26-0-171-56]: No checkpoint path provided. |
|
[default3]:07/02/2024 16:23:32 [INFO|DP=2|PP=0|TP=3|ip-26-0-171-56]: No checkpoint path provided. |
|
[default6]:07/02/2024 16:23:32 [INFO|DP=3|PP=0|TP=2|ip-26-0-171-56]: No checkpoint path provided. |
|
[default5]:07/02/2024 16:23:32 [INFO|DP=3|PP=0|TP=1|ip-26-0-171-56]: No checkpoint path provided. |
|
[default4]:07/02/2024 16:23:32 [INFO|DP=3|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default7]:07/02/2024 16:23:32 [INFO|DP=3|PP=0|TP=3|ip-26-0-171-56]: No checkpoint path provided. |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Optimizer Building] Using LearningRateForSP as learning rate |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] Size of optimizer params per rank: |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 0 has 69.4M out of 277M (25.00%) params' optimizer states |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 1 has 69.4M out of 277M (25.00%) params' optimizer states |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 2 has 69.4M out of 277M (25.00%) params' optimizer states |
|
[default0]:07/02/2024 16:23:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 3 has 69.4M out of 277M (25.00%) params' optimizer states |
|
[default0]:07/02/2024 16:23:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples |
|
[default0]:07/02/2024 16:23:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Using `datasets` library |
|
[default0]:07/02/2024 16:23:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4') |
|
[default0]:07/02/2024 16:23:36 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] There are 1 training stages |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Stage Training Stage] start from step 1 |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Start training] datetime: 2024-07-02 16:23:37.289018 | mbs: 4 | grad_accum: 64 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0 |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps |
|
[default0]:07/02/2024 16:23:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1877.40MiB. Peak allocated 1877.40MiB. Peak reserved: 1934.00MiB |
|
[default6]:07/02/2024 16:23:37 [WARNING|DP=3|PP=0|TP=2|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:07/02/2024 16:23:37 [WARNING|DP=2|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:07/02/2024 16:23:37 [WARNING|DP=3|PP=0|TP=1|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:07/02/2024 16:23:37 [WARNING|DP=2|PP=0|TP=1|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:07/02/2024 16:23:37 [WARNING|DP=3|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:07/02/2024 16:23:37 [WARNING|DP=2|PP=0|TP=2|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:07/02/2024 16:23:37 [WARNING|DP=2|PP=0|TP=3|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:07/02/2024 16:23:37 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:07/02/2024 16:23:37 [WARNING|DP=1|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:07/02/2024 16:23:37 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:07/02/2024 16:23:37 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:07/02/2024 16:23:37 [WARNING|DP=1|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:07/02/2024 16:23:37 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:07/02/2024 16:23:37 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:07/02/2024 16:23:37 [WARNING|DP=3|PP=0|TP=3|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:[rank8]: OSError: [Errno 122] Disk quota exceeded |
|
[default0]: |
|
[default0]:[rank8]: During handling of the above exception, another exception occurred: |
|
[default0]: |
|
[default0]:[rank8]: Traceback (most recent call last): |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default0]:[rank8]: trainer.train(dataloader) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default0]:[rank8]: output = model(**micro_batch) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default0]:[rank8]: sharded_logits = self.model( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default0]:[rank8]: output = self.pp_block(**new_kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward |
|
[default0]:[rank8]: hidden_states = self.input_layernorm(hidden_states) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward |
|
[default0]:[rank8]: return layer_norm_fn( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn |
|
[default0]:[rank8]: return LayerNormFn.apply( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply |
|
[default0]:[rank8]: return super().apply(*args, **kwargs) # type: ignore[misc] |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward |
|
[default0]:[rank8]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd |
|
[default0]:[rank8]: _layer_norm_fwd_1pass_kernel[(M,)]( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default0]:[rank8]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default0]:[rank8]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default0]:[rank8]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default0]:[rank8]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default0]:[rank8]: fn() |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default0]:[rank8]: self.fn.run( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default0]:[rank8]: return self.fn.run(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default0]:[rank8]: return self.fn.run(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default0]:[rank8]: return self.fn.run(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default0]:[rank8]: self.cache[device][key] = compile( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default0]:[rank8]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default0]:[rank8]: with open(temp_path, mode) as f: |
|
[default0]:[rank8]: OSError: [Errno 122] Disk quota exceeded |
|
[default5]:[rank13]: OSError: [Errno 122] Disk quota exceeded |
|
[default5]: |
|
[default5]:[rank13]: During handling of the above exception, another exception occurred: |
|
[default5]: |
|
[default5]:[rank13]: Traceback (most recent call last): |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default5]:[rank13]: trainer.train(dataloader) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default5]:[rank13]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default5]:[rank13]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default5]:[rank13]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default5]:[rank13]: output = model(**micro_batch) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default5]:[rank13]: sharded_logits = self.model( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default5]:[rank13]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default5]:[rank13]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default5]:[rank13]: output = self.pp_block(**new_kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward |
|
[default5]:[rank13]: hidden_states = self.input_layernorm(hidden_states) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward |
|
[default5]:[rank13]: return layer_norm_fn( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn |
|
[default5]:[rank13]: return LayerNormFn.apply( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply |
|
[default5]:[rank13]: return super().apply(*args, **kwargs) # type: ignore[misc] |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward |
|
[default5]:[rank13]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd |
|
[default5]:[rank13]: _layer_norm_fwd_1pass_kernel[(M,)]( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default5]:[rank13]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default5]:[rank13]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default5]:[rank13]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default5]:[rank13]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default5]:[rank13]: fn() |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default5]:[rank13]: self.fn.run( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank13]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank13]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank13]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default5]:[rank13]: self.cache[device][key] = compile( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default5]:[rank13]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default5]:[rank13]: with open(temp_path, mode) as f: |
|
[default5]:[rank13]: OSError: [Errno 122] Disk quota exceeded |
|
[default3]:[rank11]: OSError: [Errno 122] Disk quota exceeded |
|
[default3]: |
|
[default3]:[rank11]: During handling of the above exception, another exception occurred: |
|
[default3]: |
|
[default3]:[rank11]: Traceback (most recent call last): |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default3]:[rank11]: trainer.train(dataloader) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default3]:[rank11]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default3]:[rank11]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default3]:[rank11]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default3]:[rank11]: output = model(**micro_batch) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default3]:[rank11]: sharded_logits = self.model( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default3]:[rank11]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default3]:[rank11]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default3]:[rank11]: output = self.pp_block(**new_kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward |
|
[default3]:[rank11]: hidden_states = self.input_layernorm(hidden_states) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward |
|
[default3]:[rank11]: return layer_norm_fn( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn |
|
[default3]:[rank11]: return LayerNormFn.apply( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply |
|
[default3]:[rank11]: return super().apply(*args, **kwargs) # type: ignore[misc] |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward |
|
[default3]:[rank11]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd |
|
[default3]:[rank11]: _layer_norm_fwd_1pass_kernel[(M,)]( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default3]:[rank11]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default3]:[rank11]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default3]:[rank11]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default3]:[rank11]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default3]:[rank11]: fn() |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default3]:[rank11]: self.fn.run( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default3]:[rank11]: return self.fn.run(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default3]:[rank11]: return self.fn.run(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default3]:[rank11]: return self.fn.run(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default3]:[rank11]: self.cache[device][key] = compile( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default3]:[rank11]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default3]:[rank11]: with open(temp_path, mode) as f: |
|
[default3]:[rank11]: OSError: [Errno 122] Disk quota exceeded |
|
[default1]:[rank9]: OSError: [Errno 122] Disk quota exceeded |
|
[default1]: |
|
[default1]:[rank9]: During handling of the above exception, another exception occurred: |
|
[default1]: |
|
[default1]:[rank9]: Traceback (most recent call last): |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default1]:[rank9]: trainer.train(dataloader) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default1]:[rank9]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default1]:[rank9]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default1]:[rank9]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default1]:[rank9]: output = model(**micro_batch) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default1]:[rank9]: sharded_logits = self.model( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default1]:[rank9]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default1]:[rank9]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default1]:[rank9]: output = self.pp_block(**new_kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward |
|
[default1]:[rank9]: hidden_states = self.input_layernorm(hidden_states) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward |
|
[default1]:[rank9]: return layer_norm_fn( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn |
|
[default1]:[rank9]: return LayerNormFn.apply( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply |
|
[default1]:[rank9]: return super().apply(*args, **kwargs) # type: ignore[misc] |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward |
|
[default1]:[rank9]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd |
|
[default1]:[rank9]: _layer_norm_fwd_1pass_kernel[(M,)]( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default1]:[rank9]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default1]:[rank9]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default1]:[rank9]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default1]:[rank9]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default1]:[rank9]: fn() |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default1]:[rank9]: self.fn.run( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default1]:[rank9]: return self.fn.run(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default1]:[rank9]: return self.fn.run(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default1]:[rank9]: return self.fn.run(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default1]:[rank9]: self.cache[device][key] = compile( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default1]:[rank9]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default1]:[rank9]: with open(temp_path, mode) as f: |
|
[default1]:[rank9]: OSError: [Errno 122] Disk quota exceeded |
|
[default0]:[rank0]: OSError: [Errno 122] Disk quota exceeded |
|
[default0]: |
|
[default0]:[rank0]: During handling of the above exception, another exception occurred: |
|
[default0]: |
|
[default0]:[rank0]: Traceback (most recent call last): |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default0]:[rank0]: trainer.train(dataloader) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default0]:[rank0]: output = model(**micro_batch) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default0]:[rank0]: sharded_logits = self.model( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default0]:[rank0]: output = self.pp_block(**new_kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward |
|
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 566, in forward |
|
[default0]:[rank0]: query_states, key_value_states = self.flash_rotary_embedding(query_states, kv=key_value_states) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/layers/rotary.py", line 457, in forward |
|
[default0]:[rank0]: q = apply_rotary_emb_func( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/layers/rotary.py", line 122, in apply_rotary_emb |
|
[default0]:[rank0]: return ApplyRotaryEmb.apply( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply |
|
[default0]:[rank0]: return super().apply(*args, **kwargs) # type: ignore[misc] |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/layers/rotary.py", line 48, in forward |
|
[default0]:[rank0]: out = apply_rotary( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/rotary.py", line 202, in apply_rotary |
|
[default0]:[rank0]: rotary_kernel[grid]( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default0]:[rank0]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default0]:[rank0]: self.cache[device][key] = compile( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default0]:[rank0]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default0]:[rank0]: with open(temp_path, mode) as f: |
|
[default0]:[rank0]: OSError: [Errno 122] Disk quota exceeded |
|
[default5]:[rank5]: OSError: [Errno 122] Disk quota exceeded |
|
[default5]: |
|
[default5]:[rank5]: During handling of the above exception, another exception occurred: |
|
[default5]: |
|
[default5]:[rank5]: Traceback (most recent call last): |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default5]:[rank5]: trainer.train(dataloader) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 295, in train_batch_iter |
|
[default5]:[rank5]: self.backward(context=context, state=state, grad_accumulator=grad_accumulator) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 86, in backward |
|
[default5]:[rank5]: grad_accumulator.backward(sum(activations)) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/optim/gradient_accumulator.py", line 205, in backward |
|
[default5]:[rank5]: result = loss.backward() |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward |
|
[default5]:[rank5]: torch.autograd.backward( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/__init__.py", line 267, in backward |
|
[default5]:[rank5]: _engine_run_backward( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward |
|
[default5]:[rank5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 301, in apply |
|
[default5]:[rank5]: return user_fn(self, *args) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 821, in backward |
|
[default5]:[rank5]: dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 643, in _layer_norm_bwd |
|
[default5]:[rank5]: _layer_norm_bwd_kernel[grid]( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default5]:[rank5]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default5]:[rank5]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default5]:[rank5]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default5]:[rank5]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default5]:[rank5]: fn() |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default5]:[rank5]: self.fn.run( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank5]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank5]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default5]:[rank5]: return self.fn.run(*args, **kwargs) |
|
[default5]:[rank5]: [Previous line repeated 2 more times] |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default5]:[rank5]: self.cache[device][key] = compile( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default5]:[rank5]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default5]:[rank5]: with open(temp_path, mode) as f: |
|
[default5]:[rank5]: OSError: [Errno 122] Disk quota exceeded |
|
[default6]:[rank6]: OSError: [Errno 122] Disk quota exceeded |
|
[default6]: |
|
[default6]:[rank6]: During handling of the above exception, another exception occurred: |
|
[default6]: |
|
[default6]:[rank6]: Traceback (most recent call last): |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default6]:[rank6]: trainer.train(dataloader) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 295, in train_batch_iter |
|
[default6]:[rank6]: self.backward(context=context, state=state, grad_accumulator=grad_accumulator) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 86, in backward |
|
[default6]:[rank6]: grad_accumulator.backward(sum(activations)) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/optim/gradient_accumulator.py", line 205, in backward |
|
[default6]:[rank6]: result = loss.backward() |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward |
|
[default6]:[rank6]: torch.autograd.backward( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/__init__.py", line 267, in backward |
|
[default6]:[rank6]: _engine_run_backward( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward |
|
[default6]:[rank6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 301, in apply |
|
[default6]:[rank6]: return user_fn(self, *args) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 821, in backward |
|
[default6]:[rank6]: dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 643, in _layer_norm_bwd |
|
[default6]:[rank6]: _layer_norm_bwd_kernel[grid]( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda> |
|
[default6]:[rank6]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run |
|
[default6]:[rank6]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp> |
|
[default6]:[rank6]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench |
|
[default6]:[rank6]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench |
|
[default6]:[rank6]: fn() |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call |
|
[default6]:[rank6]: self.fn.run( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default6]:[rank6]: return self.fn.run(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default6]:[rank6]: return self.fn.run(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run |
|
[default6]:[rank6]: return self.fn.run(*args, **kwargs) |
|
[default6]:[rank6]: [Previous line repeated 2 more times] |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run |
|
[default6]:[rank6]: self.cache[device][key] = compile( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile |
|
[default6]:[rank6]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put |
|
[default6]:[rank6]: with open(temp_path, mode) as f: |
|
[default6]:[rank6]: OSError: [Errno 122] Disk quota exceeded |
|
W0702 16:23:51.686000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1286319 closing signal SIGTERM |
|
W0702 16:23:51.690000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1286320 closing signal SIGTERM |
|
W0702 16:23:51.692000 140166684469056 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3192020 closing signal SIGTERM |
|
W0702 16:23:51.695000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1286321 closing signal SIGTERM |
|
W0702 16:23:51.695000 140166684469056 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3192022 closing signal SIGTERM |
|
W0702 16:23:51.699000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1286322 closing signal SIGTERM |
|
W0702 16:23:51.695000 140166684469056 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3192024 closing signal SIGTERM |
|
W0702 16:23:51.706000 140166684469056 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3192025 closing signal SIGTERM |
|
W0702 16:23:51.731000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1286325 closing signal SIGTERM |
|
E0702 16:23:53.311000 140166684469056 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 3192018) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 |
|
Traceback (most recent call last): |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module> |
|
sys.exit(main()) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper |
|
return f(*args, **kwargs) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main |
|
run(args) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run |
|
elastic_launch( |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ |
|
return launch_agent(self._config, self._entrypoint, list(args)) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent |
|
raise ChildFailedError( |
|
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: |
|
============================================================ |
|
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED |
|
------------------------------------------------------------ |
|
Failures: |
|
[1]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 9 (local_rank: 1) |
|
exitcode : 1 (pid: 3192019) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[2]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 11 (local_rank: 3) |
|
exitcode : 1 (pid: 3192021) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[3]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 13 (local_rank: 5) |
|
exitcode : 1 (pid: 3192023) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
------------------------------------------------------------ |
|
Root Cause (first observed failure): |
|
[0]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 8 (local_rank: 0) |
|
exitcode : 1 (pid: 3192018) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
============================================================ |
|
srun: error: ip-26-0-171-56: task 1: Exited with exit code 1 |
|
E0702 16:23:53.738000 140654571476800 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1286318) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 |
|
Traceback (most recent call last): |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module> |
|
sys.exit(main()) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper |
|
return f(*args, **kwargs) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main |
|
run(args) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run |
|
elastic_launch( |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ |
|
return launch_agent(self._config, self._entrypoint, list(args)) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent |
|
raise ChildFailedError( |
|
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: |
|
============================================================ |
|
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED |
|
------------------------------------------------------------ |
|
Failures: |
|
[1]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-160-225.ec2.internal |
|
rank : 5 (local_rank: 5) |
|
exitcode : 1 (pid: 1286323) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[2]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-160-225.ec2.internal |
|
rank : 6 (local_rank: 6) |
|
exitcode : 1 (pid: 1286324) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
------------------------------------------------------------ |
|
Root Cause (first observed failure): |
|
[0]: |
|
time : 2024-07-02_16:23:51 |
|
host : ip-26-0-160-225.ec2.internal |
|
rank : 0 (local_rank: 0) |
|
exitcode : 1 (pid: 1286318) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
============================================================ |
|
srun: error: ip-26-0-160-225: task 0: Exited with exit code 1 |
|
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details. |
|
|