File size: 2,009 Bytes
02346c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: nandysoham/Canadian_Armed_Forces-clustered
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# nandysoham/Canadian_Armed_Forces-clustered

This model is a fine-tuned version of [nandysoham16/0-clustered_aug](https://huggingface.co/nandysoham16/0-clustered_aug) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5635
- Train End Logits Accuracy: 0.8368
- Train Start Logits Accuracy: 0.7778
- Validation Loss: 0.3191
- Validation End Logits Accuracy: 1.0
- Validation Start Logits Accuracy: 0.6000
- Epoch: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.5635     | 0.8368                    | 0.7778                      | 0.3191          | 1.0                            | 0.6000                           | 0     |


### Framework versions

- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2