Upload 2 files
Browse files- config.json +69 -0
- step_finetune.py +124 -0
config.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"STEPFinetuningModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "step_finetune.STEPFinetuningModelConfig",
|
7 |
+
"AutoModel": "step_finetune.STEPFinetuningModel",
|
8 |
+
"AutoModelForSeq2SeqLM": "step_finetune.STEPFinetuningModel"
|
9 |
+
},
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_ff": 3072,
|
12 |
+
"d_kv": 64,
|
13 |
+
"d_model": 768,
|
14 |
+
"decoder_start_token_id": 0,
|
15 |
+
"dense_act_fn": "relu",
|
16 |
+
"dropout_rate": 0.1,
|
17 |
+
"eos_token_id": 1,
|
18 |
+
"feed_forward_proj": "relu",
|
19 |
+
"initializer_factor": 1.0,
|
20 |
+
"is_encoder_decoder": true,
|
21 |
+
"is_gated_act": false,
|
22 |
+
"layer_norm_epsilon": 1e-06,
|
23 |
+
"model_type": "STEP_finetuning",
|
24 |
+
"n_positions": 512,
|
25 |
+
"num_decoder_layers": 12,
|
26 |
+
"num_heads": 12,
|
27 |
+
"num_layers": 12,
|
28 |
+
"output_past": true,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"relative_attention_max_distance": 128,
|
31 |
+
"relative_attention_num_buckets": 32,
|
32 |
+
"task_specific_params": {
|
33 |
+
"summarization": {
|
34 |
+
"early_stopping": true,
|
35 |
+
"length_penalty": 2.0,
|
36 |
+
"max_length": 200,
|
37 |
+
"min_length": 30,
|
38 |
+
"no_repeat_ngram_size": 3,
|
39 |
+
"num_beams": 4,
|
40 |
+
"prefix": "summarize: "
|
41 |
+
},
|
42 |
+
"translation_en_to_de": {
|
43 |
+
"early_stopping": true,
|
44 |
+
"max_length": 300,
|
45 |
+
"num_beams": 4,
|
46 |
+
"prefix": "translate English to German: "
|
47 |
+
},
|
48 |
+
"translation_en_to_fr": {
|
49 |
+
"early_stopping": true,
|
50 |
+
"max_length": 300,
|
51 |
+
"num_beams": 4,
|
52 |
+
"prefix": "translate English to French: "
|
53 |
+
},
|
54 |
+
"translation_en_to_ro": {
|
55 |
+
"early_stopping": true,
|
56 |
+
"max_length": 300,
|
57 |
+
"num_beams": 4,
|
58 |
+
"prefix": "translate English to Romanian: "
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"transformers_version": "4.38.1",
|
62 |
+
"use_cache": true,
|
63 |
+
"vocab_size": 32128,
|
64 |
+
"num_precomputed_examples": 1000,
|
65 |
+
"num_examples": 512,
|
66 |
+
"prefix_length": 10,
|
67 |
+
"prefix_max_init_length": 20,
|
68 |
+
"random_selection": true
|
69 |
+
}
|
step_finetune.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, PretrainedConfig, T5Config, PreTrainedModel, T5ForConditionalGeneration, \
|
3 |
+
AutoModelForSeq2SeqLM, Adafactor
|
4 |
+
|
5 |
+
from typing import Optional, List, Callable, Mapping, Any, Union
|
6 |
+
import os
|
7 |
+
|
8 |
+
class STEPFinetuningModelConfig(T5Config):
|
9 |
+
model_type = "STEP_finetune"
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
num_examples: int = 512,
|
13 |
+
prefix_length: int = 10,
|
14 |
+
random_selection: bool = True,
|
15 |
+
# don't change these unless you change what the prefix of the model is initialized with:
|
16 |
+
prefix_max_init_length: int = 20,
|
17 |
+
num_precomputed_examples: int = 1000,
|
18 |
+
**kwargs):
|
19 |
+
# These are all about the initialization of the prefix.
|
20 |
+
self.num_examples = num_examples
|
21 |
+
self.prefix_length = prefix_length
|
22 |
+
self.random_selection = random_selection
|
23 |
+
self.prefix_max_init_length = prefix_max_init_length
|
24 |
+
self.num_precomputed_examples = num_precomputed_examples
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class STEPFinetuningModel(PreTrainedModel):
|
30 |
+
config_class = STEPFinetuningModelConfig
|
31 |
+
|
32 |
+
def __init__(self, config: STEPFinetuningModelConfig):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.model = T5ForConditionalGeneration(config)
|
36 |
+
|
37 |
+
# Initialize the prefix with NaNs.
|
38 |
+
self.register_buffer("prefix_init_tensor", torch.zeros(config.num_precomputed_examples, config.prefix_max_init_length, config.d_model))
|
39 |
+
|
40 |
+
# There are two cases: (1) we initialize the model after STEP-pretraining, i.e. the tunable prefix is not set
|
41 |
+
# and (2) the model has been fine-tuned on downstream data, and hence there is meaningful data in the tunable prefix
|
42 |
+
|
43 |
+
# Initialize the prefix with NaNs. If we initialize from STEP-pretraining, this will not be overwritten by a custom version of from_pretrained
|
44 |
+
# if we initialize after fine-tuning, the NaNs will be overwritten anyway.
|
45 |
+
|
46 |
+
self.prefix_embedding = torch.nn.Parameter(torch.nan + torch.zeros((1, self.config.prefix_length, self.config.d_model)))
|
47 |
+
self.prefix_has_been_initialized = False
|
48 |
+
|
49 |
+
def _initialize_prefix(self):
|
50 |
+
prefix_init_tensor = self.prefix_init_tensor
|
51 |
+
if self.config.random_selection:
|
52 |
+
# randomize selection of FSTs to average for initialization the prefix.
|
53 |
+
prefix_init_tensor = prefix_init_tensor[torch.randperm(prefix_init_tensor.shape[0]), :, :]
|
54 |
+
|
55 |
+
prefix_init_tensor = prefix_init_tensor[:self.config.num_examples, :self.config.prefix_length,
|
56 |
+
:] # shape (num ex, prefix length, d model)
|
57 |
+
self.prefix_embedding.data.copy_(prefix_init_tensor.mean(dim=0, keepdims=True))
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def from_pretrained(
|
61 |
+
cls,
|
62 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
63 |
+
*model_args,
|
64 |
+
**kwargs,
|
65 |
+
):
|
66 |
+
model = super(STEPFinetuningModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
67 |
+
if torch.all(model.prefix_embedding.isnan()):
|
68 |
+
model._initialize_prefix()
|
69 |
+
return model
|
70 |
+
|
71 |
+
|
72 |
+
def prepare_input(self, kwargs):
|
73 |
+
"""
|
74 |
+
Prepends the prefix to the given input.
|
75 |
+
:param kwargs:
|
76 |
+
:return:
|
77 |
+
"""
|
78 |
+
input_ids = kwargs["input_ids"]
|
79 |
+
|
80 |
+
embedded_inputs = self.model.get_input_embeddings()(input_ids)
|
81 |
+
|
82 |
+
batch_size = input_ids.shape[0]
|
83 |
+
|
84 |
+
prefix = torch.repeat_interleave(self.prefix_embedding, batch_size, 0) #shape (batch, prefix length, embed dim)
|
85 |
+
|
86 |
+
kwargs = dict(kwargs)
|
87 |
+
|
88 |
+
embedded_inputs = torch.cat([prefix, embedded_inputs], dim=1) # shape (batch, prefix + seq length, embed dim)
|
89 |
+
|
90 |
+
del kwargs["input_ids"]
|
91 |
+
kwargs["inputs_embeds"] = embedded_inputs
|
92 |
+
|
93 |
+
if "attention_mask" in kwargs:
|
94 |
+
ones = torch.ones((batch_size, self.config.prefix_length), device=embedded_inputs.device, dtype=kwargs["attention_mask"].dtype)
|
95 |
+
input_mask = torch.cat([ones, kwargs["attention_mask"]], dim=1)
|
96 |
+
kwargs["attention_mask"] = input_mask
|
97 |
+
|
98 |
+
return kwargs
|
99 |
+
|
100 |
+
def forward(self, **kwargs):
|
101 |
+
return self.model(**self.prepare_input(kwargs))
|
102 |
+
|
103 |
+
def generate(self, **kwargs):
|
104 |
+
return self.model.generate(**self.prepare_input(kwargs))
|
105 |
+
|
106 |
+
|
107 |
+
def get_optimizer(self, optimizer: Callable[..., torch.optim.Optimizer] = None, prefix_lr:float = 10.0, **kwargs) -> torch.optim.Optimizer:
|
108 |
+
"""
|
109 |
+
Return an optimizer that uses a different learning rate (typically higher) for the prefix than for the rest of the model.
|
110 |
+
"""
|
111 |
+
|
112 |
+
prefix_params = []
|
113 |
+
other_params = []
|
114 |
+
for name, param in self.named_parameters():
|
115 |
+
if name == "prefix_embedding":
|
116 |
+
prefix_params.append(param)
|
117 |
+
else:
|
118 |
+
other_params.append(param)
|
119 |
+
if optimizer is None:
|
120 |
+
# The optimizer used in the paper.
|
121 |
+
hparams = {"scale_parameter": False, "relative_step": False, "warmup_init": False, "lr": 1e-4}
|
122 |
+
return Adafactor(params=[{"params": prefix_params, "lr": prefix_lr}, {"params": other_params}], **(hparams | kwargs))
|
123 |
+
return optimizer(params=[{"params": prefix_params, "lr": prefix_lr}, {"params": other_params}], **kwargs)
|
124 |
+
|