naeisher commited on
Commit
ad9e459
·
1 Parent(s): e74d215

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 851.30 +/- 36.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d53e66393954a272b4a9def0acb5487cfe664878f743c02830efa41103e7e9f
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883e7e5820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883e7e58b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883e7e5940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883e7e59d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f883e7e5a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f883e7e5af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f883e7e5b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883e7e5c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f883e7e5ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883e7e5d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883e7e5dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883e7e5e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f883e7e6e00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679770506074701122,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ6aW79tIts/M7gKwM3KgDyBoXU/2KeyPcMzjr9mM6I+886xv/OTpjzbSzy/9/S6P6CveT8EeJI/qRI/P21bLT8RAqG/9aaHPqiAkDyqywxAeDmpvjdmST+8JUI8Ur4Gv8LVGj8VNLk+YqjQPo+wDT+uigg+t2qJPwZKZb7hlei90L7Qv9oiBr0pzso+QZxUv+BMG7+OYNa+3nF8P85qhL17A4C+VH9OwM5E2D6mTg3ARtgiv2Faeb/SVEw/vlTeuwL9Pj7jOM+/W7uzvDw7rz/C1Ro/BO4wwGKo0D4VROe/R8xQP7ULuj+A5nG/UFu8P/wsFT8zbLo+VV0cPzVbkr/ZDbK/qcs8PbqJlrvU/te++fR2vntGgz/6pMC9uQoyP1rQlT6Eh5m9IjcqP5HsIr/z5Em/MR9nvUr2DT8kOYQ+uqHTvxU0uT5iqNA+j7ANP4iSbT7bhcO+p3AgPwJ0wD8EWeE/z0bovrP4GT6ZkXi+JqsRv61GHsD1oYS+UYxCv51ZJr+X9mg/AxsOvaCduD0ZmgY/YoMwPlT4MD7bm6O/d3KIv3CdGT11Oui6VLLmvbqh078VNLk+YqjQPo+wDT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC41Sq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhTP6PAAAAADS1PS/AAAAAGVS8b0AAAAAAWHoPwAAAACkdRE+AAAAAFzE7D8AAAAAu3XHPQAAAABrvPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyAbatgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCBSej0AAAAA1lfbvwAAAADDEwK+AAAAACBr2T8AAAAAmWCrvAAAAAB1mP0/AAAAADI3nj0AAAAAbQf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOl0GjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWmK48AAAAAJ+23b8AAAAAz0OdPQAAAADOpO4/AAAAAPeI1z0AAAAA7ecAQAAAAABtzmY9AAAAAFDfAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxnQe3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsYPPgAAAAACSt2/AAAAAMGgDL4AAAAAhNDvPwAAAAAjnYM9AAAAAEzz4j8AAAAAWpYPPgAAAACc7vW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIXZbjkuHveMAWyUTegDjAF0lEdAqimHkJa7mXV9lChoBkdAh++cDKYAsGgHTegDaAhHQKovXm7rcCZ1fZQoaAZHQIhFAyGi5/doB03oA2gIR0CqL5wuVX3hdX2UKGgGR0CJuQYsunMuaAdN6ANoCEdAqjC9Vea8YnV9lChoBkdAiBBx9gF5fWgHTegDaAhHQKo2H1ZkkKN1fZQoaAZHQIczZDw6QvJoB03oA2gIR0CqPR8L0BfbdX2UKGgGR0CEwPQjUutfaAdN6ANoCEdAqj13RE4NqnV9lChoBkdAiOMwsPJ7s2gHTegDaAhHQKo/J1QqI8B1fZQoaAZHQIifBHVf/m1oB03oA2gIR0CqRh6MrEtNdX2UKGgGR0CGgJpX6qKhaAdN6ANoCEdAqkwEw5/9YXV9lChoBkdAhkqrUb1h9mgHTegDaAhHQKpMRIZIg/11fZQoaAZHQINDpa5f+jxoB03oA2gIR0CqTWh8x9G7dX2UKGgGR0CFuWFVT72taAdN6ANoCEdAqlLHIwM6R3V9lChoBkdAhIh3OGCZnmgHTegDaAhHQKpZU56MR6F1fZQoaAZHQIVL12eQMhJoB03oA2gIR0CqWatp/PPcdX2UKGgGR0CCXgC2+fyxaAdN6ANoCEdAqltHhn8KonV9lChoBkdAguP7mMfigmgHTegDaAhHQKpjHDUExIt1fZQoaAZHQIcWjXDm8uloB03oA2gIR0CqaQZftx+8dX2UKGgGR0CGey1a4c3maAdN6ANoCEdAqmlDWoWHlHV9lChoBkdAhb2RISUTtmgHTegDaAhHQKpqWRMewLV1fZQoaAZHQIjWpzRx95RoB03oA2gIR0Cqb66Df3vhdX2UKGgGR0CI1hmJWNm2aAdN6ANoCEdAqnW0UoKD03V9lChoBkdAh7LKtHQQc2gHTegDaAhHQKp18IE8q4J1fZQoaAZHQIjfbDMvAXVoB03oA2gIR0Cqd37+T/yYdX2UKGgGR0CIIMSA6MisaAdN6ANoCEdAqn+WW+oLonV9lChoBkdAhw8hwl0HQmgHTegDaAhHQKqF2u01IiF1fZQoaAZHQIcAv7+DOC5oB03oA2gIR0CqhhlrEcbSdX2UKGgGR0CG4hAyEcsEaAdN6ANoCEdAqodA3aSLZXV9lChoBkdAiBne5OJtSGgHTegDaAhHQKqMpSCOFQF1fZQoaAZHQIWfZhH9WIZoB03oA2gIR0CqkpcohIOIdX2UKGgGR0CGnh9+gDigaAdN6ANoCEdAqpLW6TW5H3V9lChoBkdAhW9cxbjcVWgHTegDaAhHQKqT68OkLx91fZQoaAZHQIegRSBK+SNoB03oA2gIR0Cqm7iKrJbMdX2UKGgGR0CIxCiUxEfDaAdN6ANoCEdAqqLC8+Roy3V9lChoBkdAiRFHuJDVpmgHTegDaAhHQKqjAnJkoWp1fZQoaAZHQImHl4xDb8FoB03oA2gIR0CqpBtcW0qpdX2UKGgGR0CGgQguh9LIaAdN6ANoCEdAqqmdEd/8VHV9lChoBkdAhpTb8ejmCGgHTegDaAhHQKqvnRLsa891fZQoaAZHQIdCtFH8TBZoB03oA2gIR0Cqr9+J53TvdX2UKGgGR0CJf835vcagaAdN6ANoCEdAqrEMdzXBg3V9lChoBkdAh7qztLL6lGgHTegDaAhHQKq4aX8fmtB1fZQoaAZHQIjcBt1p0wJoB03oA2gIR0Cqv90VJtiydX2UKGgGR0CH+e5NGmUGaAdN6ANoCEdAqsAY5Jbt7nV9lChoBkdAhsIoyj59E2gHTegDaAhHQKrBPjG1hLJ1fZQoaAZHQImrNsWO6upoB03oA2gIR0Cqxrb0OEuhdX2UKGgGR0CHf1zasZHeaAdN6ANoCEdAqsyjbg0j1XV9lChoBkdAhmbzdDYywmgHTegDaAhHQKrM4tozvZ11fZQoaAZHQIe4azPa+N9oB03oA2gIR0CqzfsI/qxDdX2UKGgGR0CFuKxfOUt7aAdN6ANoCEdAqtS4VuaWonV9lChoBkdAiFSGmUGFBmgHTegDaAhHQKrcytuk1uR1fZQoaAZHQIeDiVjZteloB03oA2gIR0Cq3Qt4zJp4dX2UKGgGR0CGhlCpm29daAdN6ANoCEdAqt4apo9LYnV9lChoBkdAiJUtoi9qUWgHTegDaAhHQKrjemzjWCp1fZQoaAZHQIlUifFrEcdoB03oA2gIR0Cq6W8h1TzedX2UKGgGR0CKijtO2y9maAdN6ANoCEdAqumrch1TznV9lChoBkdAiYnsAWBSUGgHTegDaAhHQKrqw3iJfpl1fZQoaAZHQIjPHboKUmloB03oA2gIR0Cq8Km9YfW+dX2UKGgGR0CKxXgkTpPiaAdN6ANoCEdAqvlxYDDCQHV9lChoBkdAi1jW5hBqsWgHTegDaAhHQKr5su5jH4p1fZQoaAZHQIpJgrYoRZloB03oA2gIR0Cq+tYE4ecQdX2UKGgGR0CKJIyX2M86aAdN6ANoCEdAqwAxdv863nV9lChoBkdAiVkNrsSkCWgHTegDaAhHQKsGFPu5SWJ1fZQoaAZHQIr7TvqkdmxoB03oA2gIR0CrBlMKsuFpdX2UKGgGR0CJsCju8brDaAdN6ANoCEdAqwdtSydFv3V9lChoBkdAiZvsvh60IGgHTegDaAhHQKsM85wwTM91fZQoaAZHQIktox8D0UZoB03oA2gIR0CrFa2Qnx8VdX2UKGgGR0CJOqkP+XJHaAdN6ANoCEdAqxYNgrpaBHV9lChoBkdAiedX2EkB0mgHTegDaAhHQKsXq+3Ytg91fZQoaAZHQIl+lS619fFoB03oA2gIR0CrHRgpBomHdX2UKGgGR0CJNCYXwb2laAdN6ANoCEdAqyMlNrTH83V9lChoBkdAidtFdkauOmgHTegDaAhHQKsjYxO+IuZ1fZQoaAZHQIokLRMN+b5oB03oA2gIR0CrJIMgdOqOdX2UKGgGR0CKajEnb7CSaAdN6ANoCEdAqyn/wRXfZXV9lChoBkdAikpMaS9ug2gHTegDaAhHQKsyNMh5gPV1fZQoaAZHQImTUiGFi8ZoB03oA2gIR0CrMpeh4+r3dX2UKGgGR0CLCM0SAYpEaAdN6ANoCEdAqzRNkxyn1nV9lChoBkdAilF0euFHrmgHTegDaAhHQKs6PBN21Ul1fZQoaAZHQIjuWIbfgrJoB03oA2gIR0CrQDeR5kbxdX2UKGgGR0CJS7xXGOuJaAdN6ANoCEdAq0B4x+KCQXV9lChoBkdAhGHrNfPX1GgHTegDaAhHQKtBoeNDMNd1fZQoaAZHQIjj+nGbTc9oB03oA2gIR0CrRxR7JGONdX2UKGgGR0CIme/8EV32aAdN6ANoCEdAq058ZUDMeXV9lChoBkdAibUTnA6+4GgHTegDaAhHQKtO3Q5WBBl1fZQoaAZHQIkZ2/5+H8FoB03oA2gIR0CrUJXxvvSddX2UKGgGR0CIfHP9kz42aAdN6ANoCEdAq1c/a+N96XV9lChoBkdAibGQiqyWzGgHTegDaAhHQKtdJK7qY7d1fZQoaAZHQIgAvJxNqQBoB03oA2gIR0CrXWLv1DjSdX2UKGgGR0CIa0MsH0K7aAdN6ANoCEdAq16BubZvk3V9lChoBkdAiiQm9xp+MWgHTegDaAhHQKtj+GpuMuR1fZQoaAZHQIn94ZhrnDBoB03oA2gIR0Crar1DBuXNdX2UKGgGR0CJpzD/lyR0aAdN6ANoCEdAq2sXvQWvbHV9lChoBkdAiMePS+g132gHTegDaAhHQKtstC0ngHh1fZQoaAZHQIowTBGhEjRoB03oA2gIR0CrdApeNT99dX2UKGgGR0CJbkHnEETyaAdN6ANoCEdAq3nmws5GSnV9lChoBkdAh53uyeI2wWgHTegDaAhHQKt6Jazu4PR1fZQoaAZHQIYIwmu1WsBoB03oA2gIR0Cre0kHdGiIdX2UKGgGR0CKVdVHWjGlaAdN6ANoCEdAq4Ca6H0sfHV9lChoBkdAipZKsdT5wmgHTegDaAhHQKuGil41P311fZQoaAZHQIhxfvc8DCBoB03oA2gIR0CrhuZ1mrbQdX2UKGgGR0CKqyrbQC0XaAdN6ANoCEdAq4h8Md92HXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f549536bb493868c470ac7c07ec5119bc783cef30d420b8da7cb1bc98cbac600
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cff4691cf1b10e5c37ea2392322247681b8c16180dfd4f94f826f3c7719daf7e
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883e7e5820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883e7e58b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883e7e5940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883e7e59d0>", "_build": "<function ActorCriticPolicy._build at 0x7f883e7e5a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f883e7e5af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f883e7e5b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883e7e5c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f883e7e5ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883e7e5d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883e7e5dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883e7e5e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f883e7e6e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679770506074701122, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ6aW79tIts/M7gKwM3KgDyBoXU/2KeyPcMzjr9mM6I+886xv/OTpjzbSzy/9/S6P6CveT8EeJI/qRI/P21bLT8RAqG/9aaHPqiAkDyqywxAeDmpvjdmST+8JUI8Ur4Gv8LVGj8VNLk+YqjQPo+wDT+uigg+t2qJPwZKZb7hlei90L7Qv9oiBr0pzso+QZxUv+BMG7+OYNa+3nF8P85qhL17A4C+VH9OwM5E2D6mTg3ARtgiv2Faeb/SVEw/vlTeuwL9Pj7jOM+/W7uzvDw7rz/C1Ro/BO4wwGKo0D4VROe/R8xQP7ULuj+A5nG/UFu8P/wsFT8zbLo+VV0cPzVbkr/ZDbK/qcs8PbqJlrvU/te++fR2vntGgz/6pMC9uQoyP1rQlT6Eh5m9IjcqP5HsIr/z5Em/MR9nvUr2DT8kOYQ+uqHTvxU0uT5iqNA+j7ANP4iSbT7bhcO+p3AgPwJ0wD8EWeE/z0bovrP4GT6ZkXi+JqsRv61GHsD1oYS+UYxCv51ZJr+X9mg/AxsOvaCduD0ZmgY/YoMwPlT4MD7bm6O/d3KIv3CdGT11Oui6VLLmvbqh078VNLk+YqjQPo+wDT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC41Sq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhTP6PAAAAADS1PS/AAAAAGVS8b0AAAAAAWHoPwAAAACkdRE+AAAAAFzE7D8AAAAAu3XHPQAAAABrvPu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyAbatgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCBSej0AAAAA1lfbvwAAAADDEwK+AAAAACBr2T8AAAAAmWCrvAAAAAB1mP0/AAAAADI3nj0AAAAAbQf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOl0GjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWmK48AAAAAJ+23b8AAAAAz0OdPQAAAADOpO4/AAAAAPeI1z0AAAAA7ecAQAAAAABtzmY9AAAAAFDfAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxnQe3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsYPPgAAAAACSt2/AAAAAMGgDL4AAAAAhNDvPwAAAAAjnYM9AAAAAEzz4j8AAAAAWpYPPgAAAACc7vW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIXZbjkuHveMAWyUTegDjAF0lEdAqimHkJa7mXV9lChoBkdAh++cDKYAsGgHTegDaAhHQKovXm7rcCZ1fZQoaAZHQIhFAyGi5/doB03oA2gIR0CqL5wuVX3hdX2UKGgGR0CJuQYsunMuaAdN6ANoCEdAqjC9Vea8YnV9lChoBkdAiBBx9gF5fWgHTegDaAhHQKo2H1ZkkKN1fZQoaAZHQIczZDw6QvJoB03oA2gIR0CqPR8L0BfbdX2UKGgGR0CEwPQjUutfaAdN6ANoCEdAqj13RE4NqnV9lChoBkdAiOMwsPJ7s2gHTegDaAhHQKo/J1QqI8B1fZQoaAZHQIifBHVf/m1oB03oA2gIR0CqRh6MrEtNdX2UKGgGR0CGgJpX6qKhaAdN6ANoCEdAqkwEw5/9YXV9lChoBkdAhkqrUb1h9mgHTegDaAhHQKpMRIZIg/11fZQoaAZHQINDpa5f+jxoB03oA2gIR0CqTWh8x9G7dX2UKGgGR0CFuWFVT72taAdN6ANoCEdAqlLHIwM6R3V9lChoBkdAhIh3OGCZnmgHTegDaAhHQKpZU56MR6F1fZQoaAZHQIVL12eQMhJoB03oA2gIR0CqWatp/PPcdX2UKGgGR0CCXgC2+fyxaAdN6ANoCEdAqltHhn8KonV9lChoBkdAguP7mMfigmgHTegDaAhHQKpjHDUExIt1fZQoaAZHQIcWjXDm8uloB03oA2gIR0CqaQZftx+8dX2UKGgGR0CGey1a4c3maAdN6ANoCEdAqmlDWoWHlHV9lChoBkdAhb2RISUTtmgHTegDaAhHQKpqWRMewLV1fZQoaAZHQIjWpzRx95RoB03oA2gIR0Cqb66Df3vhdX2UKGgGR0CI1hmJWNm2aAdN6ANoCEdAqnW0UoKD03V9lChoBkdAh7LKtHQQc2gHTegDaAhHQKp18IE8q4J1fZQoaAZHQIjfbDMvAXVoB03oA2gIR0Cqd37+T/yYdX2UKGgGR0CIIMSA6MisaAdN6ANoCEdAqn+WW+oLonV9lChoBkdAhw8hwl0HQmgHTegDaAhHQKqF2u01IiF1fZQoaAZHQIcAv7+DOC5oB03oA2gIR0CqhhlrEcbSdX2UKGgGR0CG4hAyEcsEaAdN6ANoCEdAqodA3aSLZXV9lChoBkdAiBne5OJtSGgHTegDaAhHQKqMpSCOFQF1fZQoaAZHQIWfZhH9WIZoB03oA2gIR0CqkpcohIOIdX2UKGgGR0CGnh9+gDigaAdN6ANoCEdAqpLW6TW5H3V9lChoBkdAhW9cxbjcVWgHTegDaAhHQKqT68OkLx91fZQoaAZHQIegRSBK+SNoB03oA2gIR0Cqm7iKrJbMdX2UKGgGR0CIxCiUxEfDaAdN6ANoCEdAqqLC8+Roy3V9lChoBkdAiRFHuJDVpmgHTegDaAhHQKqjAnJkoWp1fZQoaAZHQImHl4xDb8FoB03oA2gIR0CqpBtcW0qpdX2UKGgGR0CGgQguh9LIaAdN6ANoCEdAqqmdEd/8VHV9lChoBkdAhpTb8ejmCGgHTegDaAhHQKqvnRLsa891fZQoaAZHQIdCtFH8TBZoB03oA2gIR0Cqr9+J53TvdX2UKGgGR0CJf835vcagaAdN6ANoCEdAqrEMdzXBg3V9lChoBkdAh7qztLL6lGgHTegDaAhHQKq4aX8fmtB1fZQoaAZHQIjcBt1p0wJoB03oA2gIR0Cqv90VJtiydX2UKGgGR0CH+e5NGmUGaAdN6ANoCEdAqsAY5Jbt7nV9lChoBkdAhsIoyj59E2gHTegDaAhHQKrBPjG1hLJ1fZQoaAZHQImrNsWO6upoB03oA2gIR0Cqxrb0OEuhdX2UKGgGR0CHf1zasZHeaAdN6ANoCEdAqsyjbg0j1XV9lChoBkdAhmbzdDYywmgHTegDaAhHQKrM4tozvZ11fZQoaAZHQIe4azPa+N9oB03oA2gIR0CqzfsI/qxDdX2UKGgGR0CFuKxfOUt7aAdN6ANoCEdAqtS4VuaWonV9lChoBkdAiFSGmUGFBmgHTegDaAhHQKrcytuk1uR1fZQoaAZHQIeDiVjZteloB03oA2gIR0Cq3Qt4zJp4dX2UKGgGR0CGhlCpm29daAdN6ANoCEdAqt4apo9LYnV9lChoBkdAiJUtoi9qUWgHTegDaAhHQKrjemzjWCp1fZQoaAZHQIlUifFrEcdoB03oA2gIR0Cq6W8h1TzedX2UKGgGR0CKijtO2y9maAdN6ANoCEdAqumrch1TznV9lChoBkdAiYnsAWBSUGgHTegDaAhHQKrqw3iJfpl1fZQoaAZHQIjPHboKUmloB03oA2gIR0Cq8Km9YfW+dX2UKGgGR0CKxXgkTpPiaAdN6ANoCEdAqvlxYDDCQHV9lChoBkdAi1jW5hBqsWgHTegDaAhHQKr5su5jH4p1fZQoaAZHQIpJgrYoRZloB03oA2gIR0Cq+tYE4ecQdX2UKGgGR0CKJIyX2M86aAdN6ANoCEdAqwAxdv863nV9lChoBkdAiVkNrsSkCWgHTegDaAhHQKsGFPu5SWJ1fZQoaAZHQIr7TvqkdmxoB03oA2gIR0CrBlMKsuFpdX2UKGgGR0CJsCju8brDaAdN6ANoCEdAqwdtSydFv3V9lChoBkdAiZvsvh60IGgHTegDaAhHQKsM85wwTM91fZQoaAZHQIktox8D0UZoB03oA2gIR0CrFa2Qnx8VdX2UKGgGR0CJOqkP+XJHaAdN6ANoCEdAqxYNgrpaBHV9lChoBkdAiedX2EkB0mgHTegDaAhHQKsXq+3Ytg91fZQoaAZHQIl+lS619fFoB03oA2gIR0CrHRgpBomHdX2UKGgGR0CJNCYXwb2laAdN6ANoCEdAqyMlNrTH83V9lChoBkdAidtFdkauOmgHTegDaAhHQKsjYxO+IuZ1fZQoaAZHQIokLRMN+b5oB03oA2gIR0CrJIMgdOqOdX2UKGgGR0CKajEnb7CSaAdN6ANoCEdAqyn/wRXfZXV9lChoBkdAikpMaS9ug2gHTegDaAhHQKsyNMh5gPV1fZQoaAZHQImTUiGFi8ZoB03oA2gIR0CrMpeh4+r3dX2UKGgGR0CLCM0SAYpEaAdN6ANoCEdAqzRNkxyn1nV9lChoBkdAilF0euFHrmgHTegDaAhHQKs6PBN21Ul1fZQoaAZHQIjuWIbfgrJoB03oA2gIR0CrQDeR5kbxdX2UKGgGR0CJS7xXGOuJaAdN6ANoCEdAq0B4x+KCQXV9lChoBkdAhGHrNfPX1GgHTegDaAhHQKtBoeNDMNd1fZQoaAZHQIjj+nGbTc9oB03oA2gIR0CrRxR7JGONdX2UKGgGR0CIme/8EV32aAdN6ANoCEdAq058ZUDMeXV9lChoBkdAibUTnA6+4GgHTegDaAhHQKtO3Q5WBBl1fZQoaAZHQIkZ2/5+H8FoB03oA2gIR0CrUJXxvvSddX2UKGgGR0CIfHP9kz42aAdN6ANoCEdAq1c/a+N96XV9lChoBkdAibGQiqyWzGgHTegDaAhHQKtdJK7qY7d1fZQoaAZHQIgAvJxNqQBoB03oA2gIR0CrXWLv1DjSdX2UKGgGR0CIa0MsH0K7aAdN6ANoCEdAq16BubZvk3V9lChoBkdAiiQm9xp+MWgHTegDaAhHQKtj+GpuMuR1fZQoaAZHQIn94ZhrnDBoB03oA2gIR0Crar1DBuXNdX2UKGgGR0CJpzD/lyR0aAdN6ANoCEdAq2sXvQWvbHV9lChoBkdAiMePS+g132gHTegDaAhHQKtstC0ngHh1fZQoaAZHQIowTBGhEjRoB03oA2gIR0CrdApeNT99dX2UKGgGR0CJbkHnEETyaAdN6ANoCEdAq3nmws5GSnV9lChoBkdAh53uyeI2wWgHTegDaAhHQKt6Jazu4PR1fZQoaAZHQIYIwmu1WsBoB03oA2gIR0Cre0kHdGiIdX2UKGgGR0CKVdVHWjGlaAdN6ANoCEdAq4Ca6H0sfHV9lChoBkdAipZKsdT5wmgHTegDaAhHQKuGil41P311fZQoaAZHQIhxfvc8DCBoB03oA2gIR0CrhuZ1mrbQdX2UKGgGR0CKqyrbQC0XaAdN6ANoCEdAq4h8Md92HXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (619 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 851.296799755469, "std_reward": 36.84989073831374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T19:58:43.618154"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea946f01c6a41be0cf091f72a6ba0505e17ff4c7abb3b512d49de31f6d977ef3
3
+ size 2136