File size: 2,496 Bytes
6f90b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576b8bf
 
 
 
 
 
6f90b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4f88f
6f90b44
 
 
 
 
9c4f88f
6f90b44
 
 
576b8bf
 
 
 
 
 
 
 
 
 
 
 
6f90b44
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: whispherMusic
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whispherMusic

This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0963
- Rouge1: 90.9672
- Rouge2: 87.2313
- Rougel: 89.5998
- Rougelsum: 89.7339
- Gen Len: 61.55

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.1983        | 1.0   | 1361  | 0.8877          | 47.1749 | 24.9442 | 38.1501 | 38.1934   | 56.0    |
| 0.8787        | 2.0   | 2722  | 0.6673          | 53.2613 | 32.6244 | 45.2405 | 45.3614   | 58.53   |
| 0.6983        | 3.0   | 4083  | 0.4976          | 57.5956 | 38.8147 | 51.0468 | 51.1725   | 59.97   |
| 0.5077        | 4.0   | 5444  | 0.3677          | 65.1283 | 49.4333 | 59.061  | 59.107    | 58.67   |
| 0.3955        | 5.0   | 6805  | 0.2650          | 70.453  | 58.4358 | 66.2936 | 66.5477   | 59.05   |
| 0.2846        | 6.0   | 8166  | 0.1987          | 77.3147 | 67.0836 | 73.4161 | 73.6763   | 59.26   |
| 0.21          | 7.0   | 9527  | 0.1489          | 84.5594 | 78.1538 | 82.1324 | 82.1614   | 60.14   |
| 0.1598        | 8.0   | 10888 | 0.1196          | 88.5138 | 83.886  | 86.8481 | 86.9753   | 61.14   |
| 0.1213        | 9.0   | 12249 | 0.1023          | 91.0285 | 87.2329 | 89.6909 | 89.7877   | 61.19   |
| 0.1051        | 10.0  | 13610 | 0.0963          | 90.9672 | 87.2313 | 89.5998 | 89.7339   | 61.55   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3