|
|
|
|
|
|
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor |
|
import base64 |
|
import torch |
|
from torch import nn |
|
|
|
|
|
import subprocess |
|
result = subprocess.run(["pip", "install", "git+https://github.com/sberbank-ai/Real-ESRGAN.git"], check=True) |
|
print(f"git+https://github.com/sberbank-ai/Real-ESRGAN.git = {result}") |
|
from RealESRGAN import RealESRGAN |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = RealESRGAN(self.device, scale=2) |
|
self.model.load_weights('/repository/RealESRGAN_x2.pth', download=True) |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
images (:obj:`PIL.Image`) |
|
candiates (:obj:`list`) |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
|
|
|
|
output_image = self.model.predict(image) |
|
|
|
|
|
buffered = BytesIO() |
|
output_image = output_image.convert('RGB') |
|
output_image.save(buffered, format="png") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
|
|
return {"image": img_str.decode()} |