File size: 1,623 Bytes
ff992cf
 
 
39d85ce
2af2513
39d85ce
ff992cf
39d85ce
ff992cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9752283
ff992cf
 
 
 
 
 
 
2af2513
 
ff992cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
---
MODEL: "mychen76/tinyllama-colorist-v2" - is a finetuned TinyLlama model using color dataset.

MOTIVATION: A fun experimental model for using TinyLlama as Llama2 replacement for resource constraint environment.  

PROMPT FORMAT: "<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:""

MODEL USAGE:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline

def print_color_space(hex_color):
    def hex_to_rgb(hex_color):
        hex_color = hex_color.lstrip('#')
        return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
    r, g, b = hex_to_rgb(hex_color)
    print(f'{hex_color}: \033[48;2;{r};{g};{b}m           \033[0m')

tokenizer = AutoTokenizer.from_pretrained(model_id_colorist_final)
pipe = pipeline(
    "text-generation",
    model=model_id_colorist_final,
    torch_dtype=torch.float16,
    device_map="auto",
)

from time import perf_counter
start_time = perf_counter()

prompt = formatted_prompt('give me a pure brown color')
sequences = pipe(
    prompt,
    do_sample=True,
    temperature=0.1,
    top_p=0.9,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=12
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time,2)} seconds")

```
Result: #807070
```
Result: <|im_start|>user
give me a pure brown color<|im_end|>
<|im_start|>assistant: #807070<|im_end>

Time taken for inference: 0.19 seconds
```

Dataset: "burkelibbey/colors"