File size: 1,282 Bytes
8d17174 1d03fb9 8d17174 a077fe4 b35240b 1d03fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: mit
datasets:
- mussacharles60/mcv-sw-female-dataset
- mozilla-foundation/common_voice_17_0
language:
- sw
base_model:
- facebook/mms-tts
tags:
- text-to-speech
- swahili
- swahili-text-to-speech
- tts
- swahili-tts
library_name: transformers
---
Swahili female voice text-to-speech model
This is a continuous development of text-to-speech model for female voice using Swahili language
Please give it a try
for inference try the following
```python
# import all required libraries
from transformers import VitsModel, AutoTokenizer
import torch
import numpy as np
import scipy.io.wavfile
# Load model and tokenizer
model = VitsModel.from_pretrained("mussacharles60/swahili-tts-female-voice")
tokenizer = AutoTokenizer.from_pretrained("mussacharles60/swahili-tts-female-voice")
# Running the TTS
text = "Mambo vipi ?, Hii ni Myssa Tech sauti ya A.I, kujaribishwa na Mussa Charles"
inputs = tokenizer(text, return_tensors="pt")
# Generate waveform
with torch.no_grad():
output = model(**inputs).waveform
# Convert PyTorch tensor to NumPy array
output_np = output.squeeze().cpu().numpy()
# Write to WAV file
scipy.io.wavfile.write("female_voice_test.wav", rate=model.config.sampling_rate, data=output_np)
```
You're all welcome to contribute.
Thanks 🤗 |