Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```bash
|
2 |
+
git clone https://github.com/neuralmagic/AutoFP8.git
|
3 |
+
pip install -e AutoFP8
|
4 |
+
```
|
5 |
+
|
6 |
+
```python
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
pretrained_model_dir = "Unbabel/TowerInstruct-7B-v0.1"
|
12 |
+
quantized_model_dir = "TowerInstruct-7B-v0.1-FP8"
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
15 |
+
tokenizer.pad_token = tokenizer.eos_token
|
16 |
+
|
17 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
18 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
19 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
20 |
+
|
21 |
+
quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")
|
22 |
+
|
23 |
+
|
24 |
+
model = AutoFP8ForCausalLM.from_pretrained(
|
25 |
+
pretrained_model_dir, quantize_config=quantize_config
|
26 |
+
)
|
27 |
+
model.quantize(examples)
|
28 |
+
model.save_quantized(quantized_model_dir)
|
29 |
+
```
|