File size: 2,073 Bytes
959c8a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-QAS-Squad_2-with-roberta-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-QAS-Squad_2-with-roberta-large

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7481
- Exact Match: 71.7912
- F1: 85.1553

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1      |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 0.957         | 0.5   | 463  | 0.8279          | 64.8987     | 79.7543 |
| 0.7977        | 1.0   | 926  | 0.7340          | 68.8325     | 82.9258 |
| 0.6992        | 1.5   | 1389 | 0.7095          | 69.8327     | 83.3647 |
| 0.6556        | 2.0   | 1852 | 0.6849          | 70.2278     | 84.0408 |
| 0.5743        | 2.5   | 2315 | 0.6992          | 70.4715     | 84.3736 |
| 0.574         | 3.0   | 2778 | 0.6917          | 70.9507     | 85.1835 |
| 0.4734        | 3.5   | 3241 | 0.7291          | 70.8330     | 84.8717 |
| 0.4733        | 4.0   | 3704 | 0.6828          | 71.6567     | 85.1160 |
| 0.4171        | 4.5   | 4167 | 0.7481          | 71.7912     | 85.1553 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2