File size: 1,836 Bytes
01334be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-govreport-1024
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-govreport-1024

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.5326
- Rouge1: 47.2014
- Rouge2: 14.3537
- Rougel: 20.357
- Rougelsum: 45.2941
- Gen Len: 748.32

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 4.7807        | 1.83  | 1000 | 4.7100          | 44.714  | 12.3085 | 18.8368 | 42.8279   | 749.72  |
| 4.4195        | 3.65  | 2000 | 4.5326          | 47.2014 | 14.3537 | 20.357  | 45.2941   | 748.32  |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.15.2