File size: 21,533 Bytes
cb65bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import os, math, gc
import torch
import torch.nn as nn
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam

# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam


def __nop(ob):
    return ob


MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
    MyModule = torch.jit.ScriptModule
    MyFunction = torch.jit.script_method


########################################################################################################
# CUDA Kernel
########################################################################################################

T_MAX = int(os.environ["RWKV_T_MAX"])  # TAKES LOTS OF VRAM!
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice

from torch.utils.cpp_extension import load

wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", f"-DTmax={T_MAX}"])


class WKV(torch.autograd.Function):
    @staticmethod
    def forward(ctx, B, T, C, w, u, k, v):
        ctx.B = B
        ctx.T = T
        ctx.C = C
        assert T <= T_MAX
        assert B * C % min(C, 32) == 0
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            w = -torch.exp(w.contiguous())
            u = u.contiguous()
            k = k.contiguous()
            v = v.contiguous()
        else:
            w = -torch.exp(w.float().contiguous())
            u = u.float().contiguous()
            k = k.float().contiguous()
            v = v.float().contiguous()
        ctx.save_for_backward(w, u, k, v)
        y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
        wkv_cuda.forward(B, T, C, w, u, k, v, y)
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            return y
        elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
            return y.half()
        elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
            return y.bfloat16()

    @staticmethod
    def backward(ctx, gy):
        B = ctx.B
        T = ctx.T
        C = ctx.C
        assert T <= T_MAX
        assert B * C % min(C, 32) == 0
        w, u, k, v = ctx.saved_tensors
        gw = torch.zeros((B, C), device=gy.device).contiguous()
        gu = torch.zeros((B, C), device=gy.device).contiguous()
        gk = torch.zeros((B, T, C), device=gy.device).contiguous()
        gv = torch.zeros((B, T, C), device=gy.device).contiguous()
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
        else:
            wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
        gw = torch.sum(gw, dim=0)
        gu = torch.sum(gu, dim=0)
        if "32" in os.environ["RWKV_FLOAT_MODE"]:
            return (None, None, None, gw, gu, gk, gv)
        elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
            return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
        elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
            return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())


def RUN_CUDA(B, T, C, w, u, k, v):
    return WKV.apply(B, T, C, w, u, k, v)


########################################################################################################
# RWKV: RWKV Time-mix + RWKV Channel-mix
########################################################################################################


class RWKV_TimeMix(MyModule):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.ctx_len = args.ctx_len
        self.n_embd = args.n_embd
        self.my_testing = self.args.my_testing
        attn_sz = args.n_embd

        with torch.no_grad():  # fancy init
            ratio_0_to_1 = layer_id / (args.n_layer - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)  # 1 to ~0

            # fancy time_decay
            decay_speed = torch.ones(attn_sz)
            for h in range(attn_sz):
                decay_speed[h] = -5 + 8 * (h / (attn_sz - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
            self.time_decay = nn.Parameter(decay_speed)
            # print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())

            # fancy time_first
            zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(attn_sz)]) * 0.5
            self.time_first = nn.Parameter(torch.ones(attn_sz) * math.log(0.3) + zigzag)

            # fancy time_mix
            x = torch.ones(1, 1, args.n_embd)
            for i in range(args.n_embd):
                x[0, 0, i] = i / args.n_embd
            self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
            self.time_mix_v = nn.Parameter(torch.pow(x, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
            self.time_mix_r = nn.Parameter(torch.pow(x, 0.5 * ratio_1_to_almost0))

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        self.key = nn.Linear(args.n_embd, attn_sz, bias=False)
        self.value = nn.Linear(args.n_embd, attn_sz, bias=False)
        self.receptance = nn.Linear(args.n_embd, attn_sz, bias=False)

        self.output = nn.Linear(attn_sz, args.n_embd, bias=False)

        # if self.my_testing > 0:
        #     self.aaa = nn.Parameter(torch.zeros(1, 1, args.n_embd))

    @MyFunction
    def jit_func(self, x):

        # Mix x with the previous timestep to produce xk, xv, xr
        xx = self.time_shift(x)
        xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
        xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
        xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)

        # Use xk, xv, xr to produce k, v, r
        k = self.key(xk)
        v = self.value(xv)
        r = self.receptance(xr)
        sr = torch.sigmoid(r)

        return sr, k, v

    def forward(self, x):
        B, T, C = x.size()  # x = (Batch,Time,Channel)

        sr, k, v = self.jit_func(x)

        rwkv = sr * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v)
        rwkv = self.output(rwkv)
        return rwkv


class RWKV_ChannelMix(MyModule):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.my_testing = self.args.my_testing
        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        with torch.no_grad():  # fancy init of time_mix
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)  # 1 to ~0

            x = torch.ones(1, 1, args.n_embd)
            for i in range(args.n_embd):
                x[0, 0, i] = i / args.n_embd

            self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
            self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))

        hidden_sz = 4 * args.n_embd
        self.key = nn.Linear(args.n_embd, hidden_sz, bias=False)
        self.receptance = nn.Linear(args.n_embd, args.n_embd, bias=False)
        self.value = nn.Linear(hidden_sz, args.n_embd, bias=False)

        # if self.my_testing in [1]:
        #     self.aaa = nn.Parameter(torch.zeros(1, 1, hidden_sz))
        # elif self.my_testing in [2]:
        #     self.aaa = nn.Parameter(torch.zeros(1, 1, args.n_embd))


    @MyFunction
    def forward(self, x):
        xx = self.time_shift(x)
        xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
        xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)

        k = self.key(xk)
        k = torch.square(torch.relu(k))
        kv = self.value(k)

        rkv = torch.sigmoid(self.receptance(xr)) * kv
        return rkv

        # k = self.key(xk)
        # # if self.my_testing in [0, 2]:
        # k = torch.square(torch.relu(k))
        # # elif self.my_testing == 1:
        # #     k = torch.square(torch.relu(k)) + k * self.aaa
        # kv = self.value(k)
        # r = self.receptance(xr)
        # # if self.my_testing == 0:
        # r = torch.sigmoid(r)
        # # elif self.my_testing == 2:
        # #     r = torch.sigmoid(r) + r * self.aaa
        # rkv = r * kv
        # return rkv

########################################################################################################
# The RWKV Model with our blocks
########################################################################################################


class Block(nn.Module):
    def __init__(self, args, layer_id):
        super().__init__()
        self.args = args
        self.layer_id = layer_id

        self.ln1 = nn.LayerNorm(args.n_embd)
        self.ln2 = nn.LayerNorm(args.n_embd)

        if self.layer_id == 0:
            self.ln0 = nn.LayerNorm(args.n_embd)
            if args.my_pos_emb > 0:
                self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
                self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))

        if self.layer_id == 0 and self.args.pre_ffn > 0:
            self.ffnPre = RWKV_ChannelMix(args, 0)
        else:
            self.att = RWKV_TimeMix(args, layer_id)

        self.ffn = RWKV_ChannelMix(args, layer_id)
        
        if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
            self.tiny_ln = nn.LayerNorm(args.n_embd)
            self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
            self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
            self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
            self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))

    def forward(self, x, x_emb=None):
        args = self.args
        B, T, C = x.size()
        if self.layer_id == 0:
            x = self.ln0(x)
            if args.my_pos_emb > 0:
                pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
                x = x + pos_emb

        if self.layer_id == 0 and args.pre_ffn > 0:
            x = x + self.ffnPre(self.ln1(x))
        else:
            x = x + self.att(self.ln1(x))
        x = x + self.ffn(self.ln2(x))

        if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
            xx = self.tiny_ln(x)
            q = self.tiny_q(xx)[:, :T, :]
            k = self.tiny_k(xx)[:, :T, :]
            c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
            c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
            x = x + c @ self.tiny_v(x_emb)
        return x


class L2Wrap(torch.autograd.Function):
    @staticmethod
    def forward(ctx, loss, y):
        ctx.save_for_backward(y)
        return loss

    @staticmethod
    def backward(ctx, grad_output):
        y = ctx.saved_tensors[0]
        # to encourage the logits to be close to 0
        factor = 1e-4 / (y.shape[0] * y.shape[1])
        maxx, ids = torch.max(y, -1, keepdim=True)
        gy = torch.zeros_like(y)
        gy.scatter_(-1, ids, maxx * factor)
        return (grad_output, gy)


class RWKV(pl.LightningModule):
    def __init__(self, args):
        super().__init__()
        self.args = args

        self.emb = nn.Embedding(args.vocab_size, args.n_embd)

        self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])

        self.ln_out = nn.LayerNorm(args.n_embd)
        self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)

        if args.head_qk > 0:
            self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
            self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
            self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))

    def resize_emb(self, new_tokens: int):
        print(f"### RESIZING MODEL TO {new_tokens} TOKENS ###")
        
        new_embed = nn.Embedding(new_tokens, self.args.n_embd)
        new_embed.to(self.emb.weight.device, dtype=self.emb.weight.dtype)
        nn.init.zeros_(new_embed.weight)
        
        n = min(self.args.vocab_size, new_tokens)
        print("### Start emb copy", new_embed.weight.size(), self.emb.weight.size())
        new_embed.weight.data[:n, :] = self.emb.weight.data[:n, :]
        self.emb = new_embed
        print("### emb copy end")

        # Now we resize head
        new_head = nn.Linear(self.args.n_embd, new_tokens, bias=False)
        new_head.to(self.head.weight.device, dtype=self.head.weight.dtype)
        nn.init.orthogonal_(new_head.weight, gain=1 * 0.5)

        print("### Start head copy", new_head.weight.size(), self.head.weight.size())
        new_head.weight.data[:n, :] = self.head.weight.data[:n, :]
        self.head = new_head
        print("### RESIZE END")

    def configure_optimizers(self):
        args = self.args
        if args.layerwise_lr > 0:
            lr_1x = set()
            lr_2x = set()
            lr_3x = set()
            for n, p in self.named_parameters():
                if "time_mix" in n:
                    if args.my_pile_stage == 2:
                        lr_2x.add(n)
                    else:
                        lr_1x.add(n)
                elif "time_decay" in n:
                    if args.my_pile_stage == 2:
                        lr_3x.add(n)
                    else:
                        lr_2x.add(n)
                elif "time_first" in n:
                    lr_3x.add(n)
                else:
                    lr_1x.add(n)
            lr_1x = sorted(list(lr_1x))
            lr_2x = sorted(list(lr_2x))
            lr_3x = sorted(list(lr_3x))
            # print('1x', lr_1x)
            # print('2x', lr_2x)
            # print('3x', lr_3x)
            param_dict = {n: p for n, p in self.named_parameters()}
            if args.my_pile_stage == 2:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
                ]
            else:
                optim_groups = [
                    {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
                    {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
                    {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
                ]
        else:
            optim_groups = [
                {"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
            ]

        if self.deepspeed_offload:
            return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
        return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
        # return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)

    @property
    def deepspeed_offload(self) -> bool:
        strategy = self.trainer.strategy
        if isinstance(strategy, DeepSpeedStrategy):
            cfg = strategy.config["zero_optimization"]
            return cfg.get("offload_optimizer") or cfg.get("offload_param")
        return False

    def forward(self, idx):
        args = self.args
        B, T = idx.size()
        assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."

        x = self.emb(idx)
        x_emb = x

        if args.tiny_att_dim > 0:
            for block in self.blocks:
                if args.grad_cp == 1:
                    x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
                else:
                    x = block(x, x_emb)
        else:
            for block in self.blocks:
                if args.grad_cp == 1:
                    x = deepspeed.checkpointing.checkpoint(block, x)
                else:
                    x = block(x)

        x = self.ln_out(x)

        if args.head_qk > 0:
            q = self.head_q(x)[:, :T, :]
            k = self.head_k(x)[:, :T, :]
            c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
            c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)

            if "32" in os.environ["RWKV_FLOAT_MODE"]:
                c = c @ F.one_hot(idx, num_classes=args.vocab_size)
            elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
                c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
            elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
                c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()

            x = self.head(x) + c
        else:
            x = self.head(x)

        return x

    def training_step(self, batch, batch_idx):
        args = self.args
        if args.my_qa_mask == 0:
            idx, targets = batch
            logits = self(idx)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        else:
            idx, targets, mask = batch
            mask = mask.view(-1)
            sum_mask = torch.sum(mask).item()
            # if sum_mask == 0:
            #     return torch.tensor([0.0], requires_grad=True)

            logits = self(idx)
            if sum_mask == mask.shape[0]:
                loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
                # print('rank', self.global_rank, 'loss', loss.item())
            else:
                loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
                # loss_raw = loss
                loss = torch.sum(loss * mask) / sum_mask

                # torch.set_printoptions(threshold=10000)
                # if True: #self.global_rank == 1:
                #     tmp = ''
                #     sss = 0
                #     ccc = 0
                #     for i in range(mask.shape[0]):
                #         if mask[i] > 0:
                #             tmp += str(idx.view(-1)[i].item()) + ','
                #             sss += loss_raw.view(-1)[i].float().item()
                #             ccc += 1
                #     print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)

        return L2Wrap.apply(loss, logits)

    def training_step_end(self, batch_parts):
        all = self.all_gather(batch_parts)
        if self.trainer.is_global_zero:
            self.trainer.my_loss_all = all

    def generate_init_weight(self):
        print(
            f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
        )
        m = {}
        for n in self.state_dict():
            p = self.state_dict()[n]
            shape = p.shape

            gain = 1.0
            scale = 1.0
            if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n:
                m[n] = p
            else:
                if n == "emb.weight":
                    scale = -1 * self.args.lr_init
                else:
                    if shape[0] > shape[1]:
                        gain = math.sqrt(shape[0] / shape[1])
                    for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q."]:
                        if kk in n:
                            scale = 0
                    if n == "head.weight":
                        scale = 0.5
                    if "head_k." in n:
                        scale = 0.1
                    if "head_q." in n:
                        scale = 0

                print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")

                if self.args.accelerator.upper() == "GPU":
                    m[n] = torch.empty((shape[0], shape[1]), device="cuda")
                else:
                    m[n] = torch.empty((shape[0], shape[1]))

                if scale == 0:
                    nn.init.zeros_(m[n])
                elif scale < 0:
                    nn.init.uniform_(m[n], a=scale, b=-scale)
                else:
                    nn.init.orthogonal_(m[n], gain=gain * scale)

            m[n] = m[n].cpu()
            if os.environ["RWKV_FLOAT_MODE"] == "fp16":
                m[n] = m[n].half()
            elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
                m[n] = m[n].bfloat16()

            # if n == "emb.weight":
            #     print(m[n])

        gc.collect()
        torch.cuda.empty_cache()
        return m