|
import transformers |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
|
|
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise |
|
|
|
class FrozenBNBLinear(nn.Module): |
|
def __init__(self, weight, absmax, code, bias=None): |
|
assert isinstance(bias, nn.Parameter) or bias is None |
|
super().__init__() |
|
self.out_features, self.in_features = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
self.bias = bias |
|
|
|
def forward(self, input): |
|
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) |
|
if self.adapter: |
|
output += self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": |
|
weights_int8, state = quantize_blockise_lowmemory(linear.weight) |
|
return cls(weights_int8, *state, linear.bias) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" |
|
|
|
|
|
class DequantizeAndLinear(torch.autograd.Function): |
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, |
|
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): |
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
ctx.save_for_backward(input, weights_quantized, absmax, code) |
|
ctx._has_bias = bias is not None |
|
return F.linear(input, weights_deq, bias) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_output: torch.Tensor): |
|
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] |
|
input, weights_quantized, absmax, code = ctx.saved_tensors |
|
|
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
grad_input = grad_output @ weights_deq |
|
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None |
|
return grad_input, None, None, None, grad_bias |
|
|
|
|
|
class FrozenBNBEmbedding(nn.Module): |
|
def __init__(self, weight, absmax, code): |
|
super().__init__() |
|
self.num_embeddings, self.embedding_dim = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
|
|
def forward(self, input, **kwargs): |
|
with torch.no_grad(): |
|
|
|
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) |
|
output = F.embedding(input, weight_deq, **kwargs) |
|
if self.adapter: |
|
output += self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": |
|
weights_int8, state = quantize_blockise_lowmemory(embedding.weight) |
|
return cls(weights_int8, *state) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" |
|
|
|
|
|
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): |
|
assert chunk_size % 4096 == 0 |
|
code = None |
|
chunks = [] |
|
absmaxes = [] |
|
flat_tensor = matrix.view(-1) |
|
for i in range((matrix.numel() - 1) // chunk_size + 1): |
|
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() |
|
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) |
|
chunks.append(quantized_chunk) |
|
absmaxes.append(absmax_chunk) |
|
|
|
matrix_i8 = torch.cat(chunks).reshape_as(matrix) |
|
absmax = torch.cat(absmaxes) |
|
return matrix_i8, (absmax, code) |
|
|
|
|
|
def convert_to_int8(model): |
|
"""Convert linear and embedding modules to 8-bit with optional adapters""" |
|
for module in list(model.modules()): |
|
for name, child in module.named_children(): |
|
if isinstance(child, nn.Linear): |
|
print(name, child) |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBLinear( |
|
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
bias=child.bias, |
|
), |
|
) |
|
elif isinstance(child, nn.Embedding): |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBEmbedding( |
|
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
) |
|
) |
|
|
|
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
convert_to_int8(self.attn) |
|
convert_to_int8(self.mlp) |
|
|
|
|
|
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |
|
|
|
|
|
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |