File size: 3,357 Bytes
fbe9ac8
 
 
 
 
 
 
a4bc311
fbe9ac8
 
 
 
 
 
 
 
 
 
 
73f6fce
 
 
 
 
fbe9ac8
ee27aae
fbe9ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9699c
a4bc311
2c9699c
fbe9ac8
2c9699c
 
fbe9ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
exported_from: Dogge/llama-3-70B-instruct-uncensored
language:
- en
library_name: transformers
license: apache-2.0
no_imatrix: 'GGML_ASSERT: llama.cpp/ggml-quants.c:11239: grid_index >= 0'
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---
## About

<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type:  -->
<!-- ### vocab_type:  -->
weighted/imatrix quants of https://huggingface.co/Dogge/llama-3-70B-instruct-uncensored

**No more quants are incoming, as llama.cpp crashes when generating them.**

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 |  |
| [PART 1](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/llama-3-70B-instruct-uncensored-i1-GGUF/resolve/main/llama-3-70B-instruct-uncensored.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->