mradermacher commited on
Commit
10b381d
·
verified ·
1 Parent(s): 48df741

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -1,6 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/gsarti/gemma-2-2b-rebus-solver-fp16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gsarti/gemma-2-2b-rebus-solver-fp16
3
+ datasets:
4
+ - gsarti/eureka-rebus
5
+ language:
6
+ - it
7
+ library_name: transformers
8
+ license: apache-2.0
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - text-generation-inference
12
+ - unsloth
13
+ - gemma
14
+ - gemma2
15
+ - trl
16
+ - word-game
17
+ - rebus
18
+ - italian
19
+ - word-puzzle
20
+ - crossword
21
+ ---
22
+ ## About
23
+
24
  <!-- ### quantize_version: 2 -->
25
  <!-- ### output_tensor_quantised: 1 -->
26
  <!-- ### convert_type: hf -->
27
  <!-- ### vocab_type: -->
28
  <!-- ### tags: -->
29
  static quants of https://huggingface.co/gsarti/gemma-2-2b-rebus-solver-fp16
30
+
31
+ <!-- provided-files -->
32
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
33
+ ## Usage
34
+
35
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
36
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
37
+ more details, including on how to concatenate multi-part files.
38
+
39
+ ## Provided Quants
40
+
41
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
42
+
43
+ | Link | Type | Size/GB | Notes |
44
+ |:-----|:-----|--------:|:------|
45
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q2_K.gguf) | Q2_K | 1.3 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.IQ3_XS.gguf) | IQ3_XS | 1.4 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.IQ3_S.gguf) | IQ3_S | 1.5 | beats Q3_K* |
48
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q3_K_S.gguf) | Q3_K_S | 1.5 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.IQ3_M.gguf) | IQ3_M | 1.5 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q3_K_M.gguf) | Q3_K_M | 1.6 | lower quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q3_K_L.gguf) | Q3_K_L | 1.7 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.IQ4_XS.gguf) | IQ4_XS | 1.7 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended |
54
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended |
55
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q5_K_S.gguf) | Q5_K_S | 2.0 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q5_K_M.gguf) | Q5_K_M | 2.0 | |
57
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q6_K.gguf) | Q6_K | 2.3 | very good quality |
58
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.Q8_0.gguf) | Q8_0 | 2.9 | fast, best quality |
59
+ | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-rebus-solver-fp16-GGUF/resolve/main/gemma-2-2b-rebus-solver-fp16.f16.gguf) | f16 | 5.3 | 16 bpw, overkill |
60
+
61
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
62
+ types (lower is better):
63
+
64
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
65
+
66
+ And here are Artefact2's thoughts on the matter:
67
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
68
+
69
+ ## FAQ / Model Request
70
+
71
+ See https://huggingface.co/mradermacher/model_requests for some answers to
72
+ questions you might have and/or if you want some other model quantized.
73
+
74
+ ## Thanks
75
+
76
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
77
+ me use its servers and providing upgrades to my workstation to enable
78
+ this work in my free time.
79
+
80
+ <!-- end -->