mradermacher commited on
Commit
f755f8a
·
verified ·
1 Parent(s): 8a6a9a3

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,6 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/Mabeck/Heidrun-Mistral-7B-base
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Mabeck/Heidrun-Mistral-7B-base
3
+ datasets:
4
+ - wikimedia/wikipedia
5
+ language:
6
+ - en
7
+ - da
8
+ library_name: transformers
9
+ license: mit
10
+ quantized_by: mradermacher
11
+ tags:
12
+ - text-generation-inference
13
+ - transformers
14
+ - unsloth
15
+ - mistral
16
+ - trl
17
+ ---
18
+ ## About
19
+
20
  <!-- ### quantize_version: 2 -->
21
  <!-- ### output_tensor_quantised: 1 -->
22
  <!-- ### convert_type: hf -->
23
  <!-- ### vocab_type: -->
24
  <!-- ### tags: nicoboss -->
25
  weighted/imatrix quants of https://huggingface.co/Mabeck/Heidrun-Mistral-7B-base
26
+
27
+ <!-- provided-files -->
28
+ static quants are available at https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-GGUF
29
+ ## Usage
30
+
31
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
32
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
33
+ more details, including on how to concatenate multi-part files.
34
+
35
+ ## Provided Quants
36
+
37
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
38
+
39
+ | Link | Type | Size/GB | Notes |
40
+ |:-----|:-----|--------:|:------|
41
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
42
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
45
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality |
46
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better |
47
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
49
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
50
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality |
52
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended |
53
+ | [GGUF](https://huggingface.co/mradermacher/Heidrun-Mistral-7B-base-i1-GGUF/resolve/main/Heidrun-Mistral-7B-base.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K |
54
+
55
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
56
+ types (lower is better):
57
+
58
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
59
+
60
+ And here are Artefact2's thoughts on the matter:
61
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
62
+
63
+ ## FAQ / Model Request
64
+
65
+ See https://huggingface.co/mradermacher/model_requests for some answers to
66
+ questions you might have and/or if you want some other model quantized.
67
+
68
+ ## Thanks
69
+
70
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
71
+ me use its servers and providing upgrades to my workstation to enable
72
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
73
+
74
+ <!-- end -->