File size: 4,938 Bytes
feab391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06376bd
 
 
 
 
 
feab391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: HelpingAI/Cipher-20B
language:
- en
library_name: transformers
license: other
license_link: https://helpingai.co/license
license_name: helpingai
quantized_by: mradermacher
tags:
- HelpingAI
- Cipher
- Code Generation
- Programming
- AI Assistant
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/HelpingAI/Cipher-20B

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Cipher-20B-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ1_S.gguf) | i1-IQ1_S | 4.9 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ1_M.gguf) | i1-IQ1_M | 5.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ2_S.gguf) | i1-IQ2_S | 6.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ2_M.gguf) | i1-IQ2_M | 7.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 7.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q2_K.gguf) | i1-Q2_K | 8.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 8.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 8.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 9.2 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ3_S.gguf) | i1-IQ3_S | 9.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ3_M.gguf) | i1-IQ3_M | 9.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 10.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 11.1 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 11.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q4_0.gguf) | i1-Q4_0 | 11.9 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 11.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 14.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Cipher-20B-i1-GGUF/resolve/main/Cipher-20B.i1-Q6_K.gguf) | i1-Q6_K | 17.0 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->