t5-text2sql_v3

This model is a fine-tuned version of mousaazari/t5-text2sql_v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1501
  • Rouge2 Precision: 0.6088
  • Rouge2 Recall: 0.3597
  • Rouge2 Fmeasure: 0.4201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
No log 1.0 430 0.3126 0.3937 0.2301 0.2679
0.4851 2.0 860 0.2583 0.4656 0.2854 0.3289
0.3271 3.0 1290 0.2256 0.4858 0.2875 0.3337
0.2696 4.0 1720 0.2075 0.5193 0.3127 0.3614
0.2376 5.0 2150 0.1937 0.5387 0.3258 0.3773
0.2072 6.0 2580 0.1839 0.5524 0.3344 0.3876
0.1875 7.0 3010 0.1752 0.5644 0.3333 0.3882
0.1875 8.0 3440 0.1704 0.5751 0.3426 0.399
0.1736 9.0 3870 0.1653 0.5821 0.3458 0.4027
0.1585 10.0 4300 0.1603 0.5841 0.3435 0.4013
0.1498 11.0 4730 0.1576 0.5905 0.3535 0.4103
0.1427 12.0 5160 0.1548 0.6031 0.3533 0.4135
0.1342 13.0 5590 0.1541 0.5976 0.3519 0.411
0.1294 14.0 6020 0.1534 0.6058 0.3549 0.4161
0.1294 15.0 6450 0.1518 0.6117 0.3593 0.4203
0.1239 16.0 6880 0.1509 0.61 0.3597 0.4202
0.1198 17.0 7310 0.1508 0.6076 0.3588 0.4195
0.1147 18.0 7740 0.1503 0.6139 0.3607 0.4219
0.1155 19.0 8170 0.1503 0.6092 0.3597 0.4201
0.1115 20.0 8600 0.1501 0.6088 0.3597 0.4201

Framework versions

  • Transformers 4.26.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.8.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support