metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-text2sql_v1
results: []
t5-text2sql_v1
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1260
- Rouge2 Precision: 0.7647
- Rouge2 Recall: 0.1682
- Rouge2 Fmeasure: 0.2715
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
---|---|---|---|---|---|---|
No log | 1.0 | 68 | 0.6880 | 0.5449 | 0.1342 | 0.2115 |
No log | 2.0 | 136 | 0.3651 | 0.6371 | 0.1381 | 0.2242 |
No log | 3.0 | 204 | 0.2780 | 0.6573 | 0.143 | 0.2322 |
No log | 4.0 | 272 | 0.2347 | 0.6729 | 0.144 | 0.2342 |
No log | 5.0 | 340 | 0.2160 | 0.7186 | 0.1544 | 0.2505 |
No log | 6.0 | 408 | 0.1963 | 0.7025 | 0.1523 | 0.2465 |
No log | 7.0 | 476 | 0.1797 | 0.7246 | 0.1564 | 0.2536 |
0.5593 | 8.0 | 544 | 0.1781 | 0.7285 | 0.1551 | 0.2521 |
0.5593 | 9.0 | 612 | 0.1674 | 0.7353 | 0.1583 | 0.2564 |
0.5593 | 10.0 | 680 | 0.1622 | 0.7412 | 0.1585 | 0.2572 |
0.5593 | 11.0 | 748 | 0.1525 | 0.7274 | 0.1559 | 0.2528 |
0.5593 | 12.0 | 816 | 0.1542 | 0.7399 | 0.158 | 0.2565 |
0.5593 | 13.0 | 884 | 0.1462 | 0.7575 | 0.1642 | 0.2655 |
0.5593 | 14.0 | 952 | 0.1453 | 0.7599 | 0.1632 | 0.265 |
0.1388 | 15.0 | 1020 | 0.1415 | 0.7601 | 0.1635 | 0.2654 |
0.1388 | 16.0 | 1088 | 0.1404 | 0.7622 | 0.1644 | 0.2663 |
0.1388 | 17.0 | 1156 | 0.1349 | 0.7673 | 0.1646 | 0.2673 |
0.1388 | 18.0 | 1224 | 0.1325 | 0.758 | 0.1624 | 0.264 |
0.1388 | 19.0 | 1292 | 0.1347 | 0.7713 | 0.1691 | 0.2731 |
0.1388 | 20.0 | 1360 | 0.1343 | 0.7664 | 0.1679 | 0.2711 |
0.1388 | 21.0 | 1428 | 0.1333 | 0.7547 | 0.1631 | 0.2644 |
0.1388 | 22.0 | 1496 | 0.1315 | 0.7649 | 0.1662 | 0.2687 |
0.0973 | 23.0 | 1564 | 0.1297 | 0.7615 | 0.1659 | 0.2683 |
0.0973 | 24.0 | 1632 | 0.1295 | 0.7588 | 0.1657 | 0.2679 |
0.0973 | 25.0 | 1700 | 0.1289 | 0.7636 | 0.1662 | 0.2692 |
0.0973 | 26.0 | 1768 | 0.1282 | 0.7689 | 0.1671 | 0.2705 |
0.0973 | 27.0 | 1836 | 0.1273 | 0.7675 | 0.1684 | 0.272 |
0.0973 | 28.0 | 1904 | 0.1270 | 0.7652 | 0.1672 | 0.2703 |
0.0973 | 29.0 | 1972 | 0.1260 | 0.7647 | 0.1682 | 0.2715 |
0.0813 | 30.0 | 2040 | 0.1260 | 0.7647 | 0.1682 | 0.2715 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1