metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-text2sql_v1
results: []
t5-text2sql_v1
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1245
- Rouge2 Precision: 0.7634
- Rouge2 Recall: 0.1643
- Rouge2 Fmeasure: 0.2668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
---|---|---|---|---|---|---|
No log | 1.0 | 68 | 0.7074 | 0.5932 | 0.1448 | 0.2296 |
No log | 2.0 | 136 | 0.3721 | 0.6346 | 0.1387 | 0.225 |
No log | 3.0 | 204 | 0.2772 | 0.6492 | 0.1436 | 0.2322 |
No log | 4.0 | 272 | 0.2343 | 0.6778 | 0.1452 | 0.2358 |
No log | 5.0 | 340 | 0.2119 | 0.7235 | 0.1533 | 0.2495 |
No log | 6.0 | 408 | 0.1922 | 0.7267 | 0.1583 | 0.2556 |
No log | 7.0 | 476 | 0.1807 | 0.7299 | 0.1575 | 0.2551 |
0.5699 | 8.0 | 544 | 0.1772 | 0.7163 | 0.1541 | 0.25 |
0.5699 | 9.0 | 612 | 0.1612 | 0.729 | 0.156 | 0.2533 |
0.5699 | 10.0 | 680 | 0.1610 | 0.7354 | 0.1563 | 0.2541 |
0.5699 | 11.0 | 748 | 0.1534 | 0.7397 | 0.158 | 0.2566 |
0.5699 | 12.0 | 816 | 0.1483 | 0.7497 | 0.1602 | 0.2601 |
0.5699 | 13.0 | 884 | 0.1456 | 0.7579 | 0.1664 | 0.2684 |
0.5699 | 14.0 | 952 | 0.1430 | 0.7528 | 0.161 | 0.2615 |
0.1382 | 15.0 | 1020 | 0.1383 | 0.7492 | 0.1624 | 0.2632 |
0.1382 | 16.0 | 1088 | 0.1386 | 0.7525 | 0.1623 | 0.263 |
0.1382 | 17.0 | 1156 | 0.1357 | 0.7644 | 0.1649 | 0.2674 |
0.1382 | 18.0 | 1224 | 0.1337 | 0.7396 | 0.1602 | 0.2599 |
0.1382 | 19.0 | 1292 | 0.1336 | 0.7498 | 0.1606 | 0.2609 |
0.1382 | 20.0 | 1360 | 0.1300 | 0.7529 | 0.1617 | 0.2626 |
0.1382 | 21.0 | 1428 | 0.1299 | 0.7522 | 0.1631 | 0.2645 |
0.1382 | 22.0 | 1496 | 0.1280 | 0.7585 | 0.1635 | 0.2654 |
0.0969 | 23.0 | 1564 | 0.1263 | 0.7601 | 0.1648 | 0.2669 |
0.0969 | 24.0 | 1632 | 0.1265 | 0.7683 | 0.1649 | 0.268 |
0.0969 | 25.0 | 1700 | 0.1263 | 0.7755 | 0.1677 | 0.2717 |
0.0969 | 26.0 | 1768 | 0.1251 | 0.7675 | 0.1653 | 0.2684 |
0.0969 | 27.0 | 1836 | 0.1243 | 0.7743 | 0.1684 | 0.2728 |
0.0969 | 28.0 | 1904 | 0.1247 | 0.7673 | 0.1656 | 0.2689 |
0.0969 | 29.0 | 1972 | 0.1245 | 0.7634 | 0.1643 | 0.2668 |
0.0807 | 30.0 | 2040 | 0.1245 | 0.7634 | 0.1643 | 0.2668 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2