|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: t5-text2sql_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-text2sql_v1 |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2037 |
|
- Rouge2 Precision: 0.8622 |
|
- Rouge2 Recall: 0.3895 |
|
- Rouge2 Fmeasure: 0.5158 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| No log | 1.0 | 11 | 1.0411 | 0.1107 | 0.0324 | 0.0483 | |
|
| No log | 2.0 | 22 | 0.7306 | 0.3176 | 0.132 | 0.1803 | |
|
| No log | 3.0 | 33 | 0.5673 | 0.5279 | 0.243 | 0.3215 | |
|
| No log | 4.0 | 44 | 0.4535 | 0.7171 | 0.3205 | 0.4264 | |
|
| No log | 5.0 | 55 | 0.3911 | 0.7334 | 0.3252 | 0.4335 | |
|
| No log | 6.0 | 66 | 0.3657 | 0.7668 | 0.3432 | 0.4565 | |
|
| No log | 7.0 | 77 | 0.3265 | 0.7596 | 0.333 | 0.4445 | |
|
| No log | 8.0 | 88 | 0.2986 | 0.8095 | 0.3576 | 0.477 | |
|
| No log | 9.0 | 99 | 0.2798 | 0.805 | 0.3624 | 0.4818 | |
|
| No log | 10.0 | 110 | 0.2619 | 0.8206 | 0.3663 | 0.4879 | |
|
| No log | 11.0 | 121 | 0.2454 | 0.8194 | 0.3663 | 0.4878 | |
|
| No log | 12.0 | 132 | 0.2379 | 0.8274 | 0.3706 | 0.493 | |
|
| No log | 13.0 | 143 | 0.2292 | 0.8359 | 0.3768 | 0.5008 | |
|
| No log | 14.0 | 154 | 0.2241 | 0.8707 | 0.3994 | 0.5261 | |
|
| No log | 15.0 | 165 | 0.2208 | 0.8618 | 0.3882 | 0.5142 | |
|
| No log | 16.0 | 176 | 0.2150 | 0.8618 | 0.3882 | 0.5142 | |
|
| No log | 17.0 | 187 | 0.2099 | 0.8618 | 0.3882 | 0.5142 | |
|
| No log | 18.0 | 198 | 0.2068 | 0.8622 | 0.3895 | 0.5158 | |
|
| No log | 19.0 | 209 | 0.2042 | 0.8622 | 0.3895 | 0.5158 | |
|
| No log | 20.0 | 220 | 0.2037 | 0.8622 | 0.3895 | 0.5158 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|