mouadenna commited on
Commit
1a0a99f
·
verified ·
1 Parent(s): e5285a5

End of training

Browse files
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
- base_model: nvidia/segformer-b1-finetuned-ade-512-512
3
  license: other
4
- metrics:
5
- - precision
6
  tags:
7
  - vision
8
  - image-segmentation
9
  - generated_from_trainer
 
 
10
  model-index:
11
  - name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
12
  results: []
@@ -15,14 +15,14 @@ model-index:
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
  should probably proofread and complete it, then remove this comment. -->
17
 
18
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/7zdji4yh)
19
  # segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
20
 
21
  This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.0082
24
- - Mean Iou: 0.8638
25
- - Precision: 0.9180
26
 
27
  ## Model description
28
 
@@ -41,7 +41,7 @@ More information needed
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
- - learning_rate: 0.0016
45
  - train_batch_size: 32
46
  - eval_batch_size: 32
47
  - seed: 42
@@ -56,55 +56,55 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
58
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|
59
- | 0.0089 | 0.9739 | 28 | 0.0081 | 0.7635 | 0.8665 |
60
- | 0.0087 | 1.9826 | 57 | 0.0098 | 0.7340 | 0.7592 |
61
- | 0.0053 | 2.9913 | 86 | 0.0056 | 0.8284 | 0.9168 |
62
- | 0.0073 | 4.0 | 115 | 0.0069 | 0.7988 | 0.8608 |
63
- | 0.005 | 4.9739 | 143 | 0.0059 | 0.8186 | 0.8704 |
64
- | 0.0042 | 5.9826 | 172 | 0.0059 | 0.8262 | 0.8836 |
65
- | 0.0047 | 6.9913 | 201 | 0.0058 | 0.8225 | 0.8749 |
66
- | 0.0044 | 8.0 | 230 | 0.0060 | 0.8168 | 0.8677 |
67
- | 0.0041 | 8.9739 | 258 | 0.0070 | 0.8057 | 0.8494 |
68
- | 0.0031 | 9.9826 | 287 | 0.0057 | 0.8260 | 0.8832 |
69
- | 0.0057 | 10.9913 | 316 | 0.0058 | 0.8289 | 0.8744 |
70
- | 0.0039 | 12.0 | 345 | 0.0065 | 0.8190 | 0.8625 |
71
- | 0.0033 | 12.9739 | 373 | 0.0061 | 0.8316 | 0.9113 |
72
- | 0.0031 | 13.9826 | 402 | 0.0066 | 0.8329 | 0.8947 |
73
- | 0.0036 | 14.9913 | 431 | 0.0059 | 0.8392 | 0.8996 |
74
- | 0.0034 | 16.0 | 460 | 0.0060 | 0.8379 | 0.8977 |
75
- | 0.004 | 16.9739 | 488 | 0.0064 | 0.8434 | 0.9075 |
76
- | 0.0029 | 17.9826 | 517 | 0.0060 | 0.8450 | 0.9010 |
77
- | 0.0027 | 18.9913 | 546 | 0.0059 | 0.8431 | 0.9038 |
78
- | 0.0035 | 20.0 | 575 | 0.0060 | 0.8445 | 0.9049 |
79
- | 0.0028 | 20.9739 | 603 | 0.0062 | 0.8474 | 0.9320 |
80
- | 0.0024 | 21.9826 | 632 | 0.0063 | 0.8442 | 0.8984 |
81
- | 0.0021 | 22.9913 | 661 | 0.0059 | 0.8526 | 0.9030 |
82
- | 0.0021 | 24.0 | 690 | 0.0059 | 0.8546 | 0.9126 |
83
- | 0.0026 | 24.9739 | 718 | 0.0065 | 0.8542 | 0.9110 |
84
- | 0.0024 | 25.9826 | 747 | 0.0068 | 0.8451 | 0.8921 |
85
- | 0.0019 | 26.9913 | 776 | 0.0069 | 0.8462 | 0.9029 |
86
- | 0.002 | 28.0 | 805 | 0.0071 | 0.8522 | 0.9145 |
87
- | 0.0022 | 28.9739 | 833 | 0.0077 | 0.8395 | 0.9304 |
88
- | 0.0019 | 29.9826 | 862 | 0.0069 | 0.8567 | 0.9167 |
89
- | 0.0027 | 30.9913 | 891 | 0.0073 | 0.8478 | 0.8957 |
90
- | 0.0026 | 32.0 | 920 | 0.0069 | 0.8575 | 0.8994 |
91
- | 0.0017 | 32.9739 | 948 | 0.0065 | 0.8602 | 0.9098 |
92
- | 0.0023 | 33.9826 | 977 | 0.0071 | 0.8517 | 0.8915 |
93
- | 0.0019 | 34.9913 | 1006 | 0.0069 | 0.8629 | 0.9200 |
94
- | 0.0016 | 36.0 | 1035 | 0.0064 | 0.8684 | 0.9213 |
95
- | 0.0017 | 36.9739 | 1063 | 0.0068 | 0.8612 | 0.9147 |
96
- | 0.002 | 37.9826 | 1092 | 0.0074 | 0.8608 | 0.9295 |
97
- | 0.0014 | 38.9913 | 1121 | 0.0069 | 0.8660 | 0.9222 |
98
- | 0.0014 | 40.0 | 1150 | 0.0075 | 0.8624 | 0.9173 |
99
- | 0.0013 | 40.9739 | 1178 | 0.0076 | 0.8560 | 0.9105 |
100
- | 0.0013 | 41.9826 | 1207 | 0.0076 | 0.8640 | 0.9193 |
101
- | 0.0013 | 42.9913 | 1236 | 0.0076 | 0.8625 | 0.9078 |
102
- | 0.0012 | 44.0 | 1265 | 0.0078 | 0.8647 | 0.9152 |
103
- | 0.0013 | 44.9739 | 1293 | 0.0078 | 0.8652 | 0.9176 |
104
- | 0.0012 | 45.9826 | 1322 | 0.0078 | 0.8638 | 0.9209 |
105
- | 0.0012 | 46.9913 | 1351 | 0.0081 | 0.8639 | 0.9186 |
106
- | 0.001 | 48.0 | 1380 | 0.0079 | 0.8641 | 0.9181 |
107
- | 0.0011 | 48.6957 | 1400 | 0.0082 | 0.8638 | 0.9180 |
108
 
109
 
110
  ### Framework versions
 
1
  ---
 
2
  license: other
3
+ base_model: nvidia/segformer-b1-finetuned-ade-512-512
 
4
  tags:
5
  - vision
6
  - image-segmentation
7
  - generated_from_trainer
8
+ metrics:
9
+ - precision
10
  model-index:
11
  - name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
12
  results: []
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
  should probably proofread and complete it, then remove this comment. -->
17
 
18
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/thj03afd)
19
  # segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
20
 
21
  This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: nan
24
+ - Mean Iou: 0.0
25
+ - Precision: 1.0
26
 
27
  ## Model description
28
 
 
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
+ - learning_rate: 0.0032
45
  - train_batch_size: 32
46
  - eval_batch_size: 32
47
  - seed: 42
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
58
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|
59
+ | 0.024 | 0.9739 | 28 | 0.0208 | 0.0 | 1.0 |
60
+ | 0.0156 | 1.9826 | 57 | 0.0145 | 0.6782 | 0.8283 |
61
+ | 0.009 | 2.9913 | 86 | 0.0115 | 0.7282 | 0.9124 |
62
+ | 0.0132 | 4.0 | 115 | 0.0098 | 0.7516 | 0.8954 |
63
+ | 0.0069 | 4.9739 | 143 | 0.0082 | 0.7743 | 0.9003 |
64
+ | 0.0058 | 5.9826 | 172 | 0.0092 | 0.7860 | 0.9163 |
65
+ | 0.0064 | 6.9913 | 201 | 0.0115 | 0.7790 | 0.9320 |
66
+ | 0.0049 | 8.0 | 230 | 0.0627 | 0.5688 | 0.9780 |
67
+ | 0.0063 | 8.9739 | 258 | 0.1204 | 0.3259 | 0.9889 |
68
+ | 0.0055 | 9.9826 | 287 | 0.2607 | 0.0005 | 1.0 |
69
+ | 0.0065 | 10.9913 | 316 | 0.3377 | 0.0 | 1.0 |
70
+ | 0.0079 | 12.0 | 345 | 0.6538 | 0.0 | 1.0 |
71
+ | 0.0 | 12.9739 | 373 | nan | 0.0 | 1.0 |
72
+ | 0.0 | 13.9826 | 402 | nan | 0.0 | 1.0 |
73
+ | 0.0 | 14.9913 | 431 | nan | 0.0 | 1.0 |
74
+ | 0.0 | 16.0 | 460 | nan | 0.0 | 1.0 |
75
+ | 0.0 | 16.9739 | 488 | nan | 0.0 | 1.0 |
76
+ | 0.0 | 17.9826 | 517 | nan | 0.0 | 1.0 |
77
+ | 0.0 | 18.9913 | 546 | nan | 0.0 | 1.0 |
78
+ | 0.0 | 20.0 | 575 | nan | 0.0 | 1.0 |
79
+ | 0.0 | 20.9739 | 603 | nan | 0.0 | 1.0 |
80
+ | 0.0 | 21.9826 | 632 | nan | 0.0 | 1.0 |
81
+ | 0.0 | 22.9913 | 661 | nan | 0.0 | 1.0 |
82
+ | 0.0 | 24.0 | 690 | nan | 0.0 | 1.0 |
83
+ | 0.0 | 24.9739 | 718 | nan | 0.0 | 1.0 |
84
+ | 0.0 | 25.9826 | 747 | nan | 0.0 | 1.0 |
85
+ | 0.0 | 26.9913 | 776 | nan | 0.0 | 1.0 |
86
+ | 0.0 | 28.0 | 805 | nan | 0.0 | 1.0 |
87
+ | 0.0 | 28.9739 | 833 | nan | 0.0 | 1.0 |
88
+ | 0.0 | 29.9826 | 862 | nan | 0.0 | 1.0 |
89
+ | 0.0 | 30.9913 | 891 | nan | 0.0 | 1.0 |
90
+ | 0.0 | 32.0 | 920 | nan | 0.0 | 1.0 |
91
+ | 0.0 | 32.9739 | 948 | nan | 0.0 | 1.0 |
92
+ | 0.0 | 33.9826 | 977 | nan | 0.0 | 1.0 |
93
+ | 0.0 | 34.9913 | 1006 | nan | 0.0 | 1.0 |
94
+ | 0.0 | 36.0 | 1035 | nan | 0.0 | 1.0 |
95
+ | 0.0 | 36.9739 | 1063 | nan | 0.0 | 1.0 |
96
+ | 0.0 | 37.9826 | 1092 | nan | 0.0 | 1.0 |
97
+ | 0.0 | 38.9913 | 1121 | nan | 0.0 | 1.0 |
98
+ | 0.0 | 40.0 | 1150 | nan | 0.0 | 1.0 |
99
+ | 0.0 | 40.9739 | 1178 | nan | 0.0 | 1.0 |
100
+ | 0.0 | 41.9826 | 1207 | nan | 0.0 | 1.0 |
101
+ | 0.0 | 42.9913 | 1236 | nan | 0.0 | 1.0 |
102
+ | 0.0 | 44.0 | 1265 | nan | 0.0 | 1.0 |
103
+ | 0.0 | 44.9739 | 1293 | nan | 0.0 | 1.0 |
104
+ | 0.0 | 45.9826 | 1322 | nan | 0.0 | 1.0 |
105
+ | 0.0 | 46.9913 | 1351 | nan | 0.0 | 1.0 |
106
+ | 0.0 | 48.0 | 1380 | nan | 0.0 | 1.0 |
107
+ | 0.0 | 48.6957 | 1400 | nan | 0.0 | 1.0 |
108
 
109
 
110
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e1f9434d6b949401dd42de001f52200f95d01e808ab7c604e3deec93149947db
3
  size 54737376
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a00b1006ecd7aa0226dbbd0b6eb3006a298b330bff2973fd70dea9a50c76654a
3
  size 54737376
runs/Jul26_10-22-18_e9717352b340/events.out.tfevents.1721989344.e9717352b340.25.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d68acddd663c862c48e9f6878c40fc29fa1ee21a30f1707a619ee0d4aec23e3
3
+ size 319136
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:216d076305f1bef7cd23ddea99be7ca5197d23d383e67e754cc4f1b06cf7b626
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:014ef312420b1169576ce79bbe89b1b146ec9733b31d366af30e809afd6b6c3e
3
  size 5304