File size: 17,061 Bytes
ea41617 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19979
- loss:CoSENTLoss
base_model: avsolatorio/GIST-small-Embedding-v0
widget:
- source_sentence: why oval face shape is attractive?
sentences:
- Both are also designed to add depth to your face, but in different ways. Bronzing
primarily warms up your face, adding color in places where the sun would naturally
hit. ... On the other hand, contouring is a makeup artist-approved technique that
works to add structure and shadow to your face.
- '''Ahjussi'' literally means uncle. You can use it for people who are very old
than you. Like someone who is the age of your father, or someone with an age gap
of 20 years or above.'
- Most major banks will be open on Christmas Eve 2018, even though it's a federal
holiday and generally recognized as a bank holiday.
- source_sentence: is ceo same as owner?
sentences:
- The CEO reports to the Chairman (acting on behalf of the Board) and to the Board
directly. The Chairman is not responsible for executive matters regarding the
Company's business. Other than the CEO and the Company Secretary, no executive
reports to the Chairman, other than through the Board.
- Understanding Deregulation In response to the country's greatest financial crisis
in its history, Franklin D. Roosevelt's administration enacted many forms of financial
regulation, including the Securities Exchange Acts of 1933 and 1934 and the U.S.
Banking Act of 1933, otherwise known as the Glass-Steagall Act.
- Gdzie kupić wodorosty? Na naszym rynku są głównie algi suszone. Bez problemu kupimy
je w supermarketach, sklepach ze zdrową żywnością, bywają w rybnych - największy
wybór jest oczywiście w sklepach internetowych. Za 10 arkuszy glonów nori zapłacimy
ok.
- source_sentence: is gern stock a good buy?
sentences:
- 'The majority of these pads are made from one of two absorptive materials: Silica
gel (a purified sand) or cellulose (a purified plant fiber), which are then coated
in a non-toxic plastic wrapping that''s perforated, allowing the liquid to seep
in and stay there.'
- '[''The Vanguard Total Stock Market ETF (NYSEMKT:VTI)'', ''The Vanguard Total
International Stock ETF (NASDAQ:VXUS)'', ''Amazon.com (NASDAQ:AMZN)'', ''Alphabet
(NASDAQ:GOOG)(NASDAQ:GOOGL)'', ''Facebook (NASDAQ:FB)'', ''Intuitive Surgical
(NASDAQ:ISRG)'']'
- SCD is a disease that worsens over time. Treatments are available that can prevent
complications and lengthen the lives of those who have this condition.
- source_sentence: where are sulfhydryl groups found?
sentences:
- Sulfhydryl groups can be found in the amino acid cysteine. When two cysteine residues
are in close proximity to each other, they can form a disulfide bridge also called
cystine.
- '["On your Android phone or tablet, open your device''s Settings app .", ''Tap
Google. Manage your Google Account.'', ''At the top, tap Personal info.'', ''Under
"Profile," tap Name Edit. . You may be asked to sign in.'', ''Enter your name,
then tap Done.'']'
- '[''Difficulty digesting fat. It may take your body time to adjust to its new
method of digesting fat. ... '', ''Diarrhea and flatulence. Indigestion can cause
diarrhea or flatulence, often made worse by excess fat or too little fiber in
the diet. ... '', ''Constipation. ... '', ''Intestinal injury. ... '', ''Jaundice
or fever.'']'
- source_sentence: do assets in an irrevocable trust get a step up in basis?
sentences:
- An irrevocable grantor trust can own S corporation stock if it meets IRS regulations.
... If the trust owner designation is not made or is unclear, the trust will not
qualify under IRS regulations. An irrevocable grantor trust does not have to make
an election to be an S corporation shareholder.
- Pineapple juice also contains bromelain, a group of enzymes linked to health benefits,
such as reduced inflammation, improved digestion, and stronger immunity ( 9 ).
Pineapple juice is rich in antioxidants, which help protect your body from damage
and disease.
- 'Ideally, fuel up two hours before you exercise by: Hydrating with water. Eating
healthy carbohydrates such as whole-grain cereals (with low-fat or skim milk),
whole-wheat toast, low-fat or fat-free yogurt, whole grain pasta, brown rice,
fruits and vegetables.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("moshew/gist_small_ft_gooaq_v4")
# Run inference
sentences = [
'do assets in an irrevocable trust get a step up in basis?',
'An irrevocable grantor trust can own S corporation stock if it meets IRS regulations. ... If the trust owner designation is not made or is unclear, the trust will not qualify under IRS regulations. An irrevocable grantor trust does not have to make an election to be an S corporation shareholder.',
'Ideally, fuel up two hours before you exercise by: Hydrating with water. Eating healthy carbohydrates such as whole-grain cereals (with low-fat or skim milk), whole-wheat toast, low-fat or fat-free yogurt, whole grain pasta, brown rice, fruits and vegetables.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 19,979 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 59.82 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>if someone blocked you on iphone can you send a text?</code> | <code>If someone has blocked you on their device, you won't get an alert when it happens. You can still use iMessage to text your former contact, but they'll never receive the message or any notification of a text received in their Messages app.</code> | <code>1.0</code> |
| <code>if someone blocked you on iphone can you send a text?</code> | <code>If someone has blocked you on their device, you won't get an alert when it happens. You can still use iMessage to text your former contact, but they'll never receive the message or any notification of a text received in their Messages app. There is one clue that you've been blocked, though.</code> | <code>0.0</code> |
| <code>can you have a relationship without expectations?</code> | <code>Loving without expectations means being able to love someone even when they are letting you down. It means loving even when it feels awful. Even when you're crying so hard you can't see straight or say clear sentences. Loving someone without expectations means knowing they aren't perfect, but neither are you.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0008 | 1 | 3.6013 |
| 0.8006 | 1000 | 3.4341 |
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |