Commit
•
a5e85ae
1
Parent(s):
481f74e
LLM-foundry update June 27, 2023 21:20:15 (#50)
Browse files- LLM-foundry update June 27, 2023 21:20:15 (ea08ffa68efe8d2a3364e4442fa932dff45eea90)
Co-authored-by: Dan Biderman <[email protected]>
- modeling_mpt.py +7 -2
- norm.py +1 -1
modeling_mpt.py
CHANGED
@@ -140,7 +140,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
146 |
if attention_mask is not None:
|
@@ -156,6 +156,8 @@ class MPTModel(MPTPreTrainedModel):
|
|
156 |
raise NotImplementedError('MPT does not support training with left padding.')
|
157 |
if self.prefix_lm and prefix_mask is None:
|
158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
|
|
159 |
if self.training:
|
160 |
if self.attn_uses_sequence_id and sequence_id is None:
|
161 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
@@ -225,6 +227,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
225 |
super().__init__(config)
|
226 |
if not config.tie_word_embeddings:
|
227 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
|
|
228 |
self.transformer = MPTModel(config)
|
229 |
for child in self.transformer.children():
|
230 |
if isinstance(child, torch.nn.ModuleList):
|
@@ -259,9 +262,11 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
259 |
def get_decoder(self):
|
260 |
return self.transformer
|
261 |
|
262 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
263 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
264 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
265 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
266 |
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
267 |
if self.logit_scale is not None:
|
|
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
|
144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
146 |
if attention_mask is not None:
|
|
|
156 |
raise NotImplementedError('MPT does not support training with left padding.')
|
157 |
if self.prefix_lm and prefix_mask is None:
|
158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
159 |
+
if inputs_embeds is not None:
|
160 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
161 |
if self.training:
|
162 |
if self.attn_uses_sequence_id and sequence_id is None:
|
163 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
|
|
227 |
super().__init__(config)
|
228 |
if not config.tie_word_embeddings:
|
229 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
230 |
+
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
231 |
self.transformer = MPTModel(config)
|
232 |
for child in self.transformer.children():
|
233 |
if isinstance(child, torch.nn.ModuleList):
|
|
|
262 |
def get_decoder(self):
|
263 |
return self.transformer
|
264 |
|
265 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
|
266 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
267 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
268 |
+
if inputs_embeds is not None:
|
269 |
+
raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
|
270 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
271 |
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
272 |
if self.logit_scale is not None:
|
norm.py
CHANGED
@@ -25,7 +25,7 @@ class LPLayerNorm(torch.nn.LayerNorm):
|
|
25 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
|
27 |
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
-
output = x
|
29 |
if weight is not None:
|
30 |
return output * weight
|
31 |
return output
|
|
|
25 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
|
27 |
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
29 |
if weight is not None:
|
30 |
return output * weight
|
31 |
return output
|