Create handler.py
Browse files- handler.py +81 -0
handler.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self, model_name: str):
|
9 |
+
# Load the model and processor
|
10 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
torch_dtype="auto",
|
13 |
+
device_map="auto"
|
14 |
+
)
|
15 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
18 |
+
# Extract image path and messages from the request data
|
19 |
+
image_path = data.get("image_path", "")
|
20 |
+
messages = data.get("messages", [])
|
21 |
+
|
22 |
+
# Load the image
|
23 |
+
try:
|
24 |
+
image = Image.open(image_path)
|
25 |
+
except FileNotFoundError:
|
26 |
+
return [{"error": "Image file not found."}]
|
27 |
+
except Exception as e:
|
28 |
+
return [{"error": str(e)}]
|
29 |
+
|
30 |
+
# Prepare the text prompt from messages
|
31 |
+
text_prompt = self.create_text_prompt(messages)
|
32 |
+
|
33 |
+
# Process inputs for the model
|
34 |
+
inputs = self.processor(
|
35 |
+
text=[text_prompt],
|
36 |
+
images=[image],
|
37 |
+
padding=True,
|
38 |
+
return_tensors="pt"
|
39 |
+
)
|
40 |
+
|
41 |
+
# Move inputs to GPU if available
|
42 |
+
inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
|
44 |
+
# Generate output using the model
|
45 |
+
output_ids = self.model.generate(**inputs, max_new_tokens=128)
|
46 |
+
|
47 |
+
# Decode the generated output
|
48 |
+
generated_ids = [
|
49 |
+
output_ids[len(input_ids):]
|
50 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
51 |
+
]
|
52 |
+
|
53 |
+
output_text = self.processor.batch_decode(
|
54 |
+
generated_ids,
|
55 |
+
skip_special_tokens=True,
|
56 |
+
clean_up_tokenization_spaces=True
|
57 |
+
)
|
58 |
+
|
59 |
+
# Clean and parse JSON from output text
|
60 |
+
cleaned_data = self.clean_output(output_text[0])
|
61 |
+
|
62 |
+
try:
|
63 |
+
json_data = json.loads(cleaned_data)
|
64 |
+
except json.JSONDecodeError:
|
65 |
+
return [{"error": "Failed to parse JSON output."}]
|
66 |
+
|
67 |
+
return [json_data]
|
68 |
+
|
69 |
+
def create_text_prompt(self, messages: List[Dict[str, Any]]) -> str:
|
70 |
+
"""Extracts and formats text content from messages."""
|
71 |
+
text_content = ""
|
72 |
+
for message in messages:
|
73 |
+
for content in message.get('content', []):
|
74 |
+
if content['type'] == 'text':
|
75 |
+
text_content += content['text']
|
76 |
+
|
77 |
+
return self.processor.apply_chat_template(messages, add_generation_prompt=True)
|
78 |
+
|
79 |
+
def clean_output(self, output: str) -> str:
|
80 |
+
"""Cleans up the model's output for JSON parsing."""
|
81 |
+
return output.replace("```json\n", "").replace("```", "").strip()
|