InternVideo2-Chat-8B / modeling_videochat2_cls.py
morpheushoc's picture
Upload InternVideo2_cls
dc963f2 verified
import os
from modeling_videochat2 import *
from modeling_base import freeze_module
from transformers import AutoConfig
token = os.environ['HF_TOKEN']
class InternVideo2_cls(InternVideo2_VideoChat2):
def __init__(self, config):
super(InternVideo2_VideoChat2, self).__init__(config=config)
def build_llm(self):
self.lm_name = self.model_config.llm.name
if self.model_config.llm.name == 'mistral_7b':
from transformers import AutoModelForSequenceClassification
config = AutoConfig.from_pretrained(
self.model_config.llm.pretrained_llm_path,
torch_dtype=torch.bfloat16,
token=token,
num_labels=self.model_config.llm.num_labels
# attn_implementation="flash_attention_2",
)
self.lm = AutoModelForSequenceClassification.from_config(config)
else:
raise NotImplementedError(self.model_config.llm.name)
self.freeze_llm = self.model_config.get("freeze_llm", True)
logger.info(f'freeze_llm: {self.freeze_llm}')
if self.freeze_llm:
logger.info("freeze llm")
freeze_module(self.lm)
if self.model_config.llm.use_lora:
self.use_lora = True
from peft import get_peft_model, LoraConfig, TaskType
logger.info("Use lora")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]
)
self.lm = get_peft_model(self.lm, peft_config)
self.lm.enable_input_require_grads()
self.lm.print_trainable_parameters()
else:
self.use_lora = False
def build_conversation(self,instruction, user_prompt,media_type='video',msg=''):
conversation = ""
if instruction:
conversation += instruction
conversation += ("[INST]" + " ")
if media_type == 'image':
conversation +=( "<Image>" + IMG_TOKEN + "</Image>")#*ilen
else:
conversation += ("<Video>" + VID_TOKEN + "</Video>")#*ilen
conversation += (msg.rstrip() + "[/INST]")
conversation += (" [INST] " + user_prompt + " [/INST]")
conversation += ("")
return conversation
def test(self, x):
return x
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2-Chat-8B',trust_remote_code=True,use_fast=False)
config = AutoConfig.from_pretrained('OpenGVLab/InternVideo2-Chat-8B', torch_dtype=torch.bfloat16,trust_remote_code=True)
model = InternVideo2_Classification(config).cuda()
B, T, C, H, W = 1, 8, 3, 224, 224
video_tensor = torch.randn(B,T,C,H,W).cuda()
user_prompt = "this is a user prompt"
instruction = "this is an instruction"
conversation = model.build_conversation(instruction=instruction, user_prompt=user_prompt, media_type='video')
tokenized = model.build_input_ids(tokenizer,conversation,max_length=248,add_special_tokens=True,truncation=False,padding=False,return_tensors='pt')
input_ids = tokenized['input_ids'].unsqueeze(0).to(model.device)
attn_mask = tokenized['attention_mask'].unsqueeze(0).to(model.device)
indexes = tokenized['index'].unsqueeze(0)
text_embeds = model.pad_text_embeds(input_ids = input_ids,video = video_tensor,video_idx = indexes)
outputs = model.lm(inputs_embeds=text_embeds, attention_mask=attn_mask,output_hidden_states=True,return_dict=True)