import os from modeling_videochat2 import * from modeling_base import freeze_module from transformers import AutoConfig token = os.environ['HF_TOKEN'] class InternVideo2_cls(InternVideo2_VideoChat2): def __init__(self, config): super(InternVideo2_VideoChat2, self).__init__(config=config) def build_llm(self): self.lm_name = self.model_config.llm.name if self.model_config.llm.name == 'mistral_7b': from transformers import AutoModelForSequenceClassification config = AutoConfig.from_pretrained( self.model_config.llm.pretrained_llm_path, torch_dtype=torch.bfloat16, token=token, num_labels=self.model_config.llm.num_labels # attn_implementation="flash_attention_2", ) self.lm = AutoModelForSequenceClassification.from_config(config) else: raise NotImplementedError(self.model_config.llm.name) self.freeze_llm = self.model_config.get("freeze_llm", True) logger.info(f'freeze_llm: {self.freeze_llm}') if self.freeze_llm: logger.info("freeze llm") freeze_module(self.lm) if self.model_config.llm.use_lora: self.use_lora = True from peft import get_peft_model, LoraConfig, TaskType logger.info("Use lora") peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] ) self.lm = get_peft_model(self.lm, peft_config) self.lm.enable_input_require_grads() self.lm.print_trainable_parameters() else: self.use_lora = False def build_conversation(self,instruction, user_prompt,media_type='video',msg=''): conversation = "" if instruction: conversation += instruction conversation += ("[INST]" + " ") if media_type == 'image': conversation +=( "" + IMG_TOKEN + "")#*ilen else: conversation += ("")#*ilen conversation += (msg.rstrip() + "[/INST]") conversation += (" [INST] " + user_prompt + " [/INST]") conversation += ("") return conversation def test(self, x): return x if __name__ == "__main__": tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2-Chat-8B',trust_remote_code=True,use_fast=False) config = AutoConfig.from_pretrained('OpenGVLab/InternVideo2-Chat-8B', torch_dtype=torch.bfloat16,trust_remote_code=True) model = InternVideo2_Classification(config).cuda() B, T, C, H, W = 1, 8, 3, 224, 224 video_tensor = torch.randn(B,T,C,H,W).cuda() user_prompt = "this is a user prompt" instruction = "this is an instruction" conversation = model.build_conversation(instruction=instruction, user_prompt=user_prompt, media_type='video') tokenized = model.build_input_ids(tokenizer,conversation,max_length=248,add_special_tokens=True,truncation=False,padding=False,return_tensors='pt') input_ids = tokenized['input_ids'].unsqueeze(0).to(model.device) attn_mask = tokenized['attention_mask'].unsqueeze(0).to(model.device) indexes = tokenized['index'].unsqueeze(0) text_embeds = model.pad_text_embeds(input_ids = input_ids,video = video_tensor,video_idx = indexes) outputs = model.lm(inputs_embeds=text_embeds, attention_mask=attn_mask,output_hidden_states=True,return_dict=True)