File size: 30,891 Bytes
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
 
 
2bb2883
aa21a77
 
 
 
 
 
 
2bb2883
aa21a77
 
 
 
 
 
 
2bb2883
aa21a77
 
 
 
 
 
 
2bb2883
aa21a77
 
 
 
 
 
 
 
2bb2883
aa21a77
 
 
 
 
2bb2883
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
 
 
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
 
 
2bb2883
aa21a77
 
 
2bb2883
aa21a77
 
 
2bb2883
aa21a77
 
 
2bb2883
 
aa21a77
2bb2883
 
 
 
aa21a77
2bb2883
aa21a77
 
 
2bb2883
aa21a77
 
 
2bb2883
aa21a77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb2883
 
 
 
 
 
 
aa21a77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb2883
 
 
 
 
 
 
aa21a77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
aa21a77
 
 
 
 
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
aa21a77
2bb2883
 
aa21a77
 
2bb2883
aa21a77
2bb2883
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa21a77
2bb2883
 
 
 
 
 
 
 
aa21a77
 
 
 
 
 
 
 
2bb2883
 
 
 
aa21a77
2bb2883
aa21a77
 
2bb2883
aa21a77
2bb2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The table indicates that 18,000 deferred shares were granted to
    non-employee directors in fiscal 2020, 15,000 in fiscal 2021, and 19,000 in fiscal
    2022.
  sentences:
  - What was the primary reason for the increased audit effort for PCC goodwill and
    indefinite-lived intangible assets?
  - How many deferred shares were granted to non-employee directors in fiscal 2020,
    2021, and 2022?
  - What was the total intrinsic value of options exercised in fiscal year 2023?
- source_sentence: In Resource Masking Industries, we expect the profit impact from
    lower sales volume to be partially offset by favorable price realization.
  sentences:
  - By what percentage did Electronic Arts' operating income grow in the fiscal year
    ended March 31, 2023?
  - What impact is expected on Resource Industries' profit due to lower sales volume?
  - How are IBM’s 2023 Annual Report to Stockholders' financial statements made a
    part of Form 10-K?
- source_sentence: The actuarial gain during the year ended December 31, 2022 was
    primarily related to increases in the discount rate assumptions.
  sentences:
  - What was the primary reason for the actuarial gain during the year ended December
    31, 2022?
  - How much did Ford's total assets amount to by December 31, 2023?
  - What was the remaining available amount of the share repurchase authorization
    as of January 29, 2023?
- source_sentence: Returned $1.7 billion to shareholders through share repurchases
    and dividend payments.
  sentences:
  - What was the carrying amount of investments without readily determinable fair
    values as of December 31, 2023?
  - What are the significant inputs to the valuation of Goldman Sachs' unsecured short-
    and long-term borrowings?
  - How much did the company return to shareholders through share repurchases and
    dividend payments in 2022?
- source_sentence: The remaining amount available for borrowing under the Revolving
    Credit Facility as of December 31, 2023, was $2,245.2 million.
  sentences:
  - What was the total amount available for borrowing under the Revolving Credit Facility
    at Iron Mountain as of December 31, 2023?
  - What type of information is included in Note 13 of the Annual Report on Form 10-K?
  - How much did local currency revenue increase in Latin America in 2023 compared
    to 2022?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6828571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8242857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8557142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9057142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6828571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2747619047619047
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17114285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09057142857142855
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6828571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8242857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8557142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9057142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7963610970343802
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7612930839002267
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7648513048205645
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.68
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8157142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8542857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.68
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27190476190476187
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17085714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.68
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8157142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8542857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7911616934987842
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7562284580498863
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.760087172570928
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.68
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8114285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.68
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2704761904761905
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.68
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8114285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7888581850866868
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7542278911564625
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7579536807505182
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6571428571428571
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.79
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8285714285714286
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8857142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6571428571428571
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2633333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1657142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08857142857142856
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6571428571428571
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.79
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8285714285714286
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8857142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7703812626851927
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.733632653061224
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7378840513025602
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.62
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.77
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8028571428571428
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.85
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.62
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16057142857142856
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.085
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.62
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.77
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8028571428571428
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.85
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.73777886683529
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7016190476190474
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7073607864232172
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The remaining amount available for borrowing under the Revolving Credit Facility as of December 31, 2023, was $2,245.2 million.',
    'What was the total amount available for borrowing under the Revolving Credit Facility at Iron Mountain as of December 31, 2023?',
    'What type of information is included in Note 13 of the Annual Report on Form 10-K?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6829     |
| cosine_accuracy@3   | 0.8243     |
| cosine_accuracy@5   | 0.8557     |
| cosine_accuracy@10  | 0.9057     |
| cosine_precision@1  | 0.6829     |
| cosine_precision@3  | 0.2748     |
| cosine_precision@5  | 0.1711     |
| cosine_precision@10 | 0.0906     |
| cosine_recall@1     | 0.6829     |
| cosine_recall@3     | 0.8243     |
| cosine_recall@5     | 0.8557     |
| cosine_recall@10    | 0.9057     |
| cosine_ndcg@10      | 0.7964     |
| cosine_mrr@10       | 0.7613     |
| **cosine_map@100**  | **0.7649** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.68       |
| cosine_accuracy@3   | 0.8157     |
| cosine_accuracy@5   | 0.8543     |
| cosine_accuracy@10  | 0.9        |
| cosine_precision@1  | 0.68       |
| cosine_precision@3  | 0.2719     |
| cosine_precision@5  | 0.1709     |
| cosine_precision@10 | 0.09       |
| cosine_recall@1     | 0.68       |
| cosine_recall@3     | 0.8157     |
| cosine_recall@5     | 0.8543     |
| cosine_recall@10    | 0.9        |
| cosine_ndcg@10      | 0.7912     |
| cosine_mrr@10       | 0.7562     |
| **cosine_map@100**  | **0.7601** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.68      |
| cosine_accuracy@3   | 0.8114    |
| cosine_accuracy@5   | 0.8486    |
| cosine_accuracy@10  | 0.8971    |
| cosine_precision@1  | 0.68      |
| cosine_precision@3  | 0.2705    |
| cosine_precision@5  | 0.1697    |
| cosine_precision@10 | 0.0897    |
| cosine_recall@1     | 0.68      |
| cosine_recall@3     | 0.8114    |
| cosine_recall@5     | 0.8486    |
| cosine_recall@10    | 0.8971    |
| cosine_ndcg@10      | 0.7889    |
| cosine_mrr@10       | 0.7542    |
| **cosine_map@100**  | **0.758** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6571     |
| cosine_accuracy@3   | 0.79       |
| cosine_accuracy@5   | 0.8286     |
| cosine_accuracy@10  | 0.8857     |
| cosine_precision@1  | 0.6571     |
| cosine_precision@3  | 0.2633     |
| cosine_precision@5  | 0.1657     |
| cosine_precision@10 | 0.0886     |
| cosine_recall@1     | 0.6571     |
| cosine_recall@3     | 0.79       |
| cosine_recall@5     | 0.8286     |
| cosine_recall@10    | 0.8857     |
| cosine_ndcg@10      | 0.7704     |
| cosine_mrr@10       | 0.7336     |
| **cosine_map@100**  | **0.7379** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.62       |
| cosine_accuracy@3   | 0.77       |
| cosine_accuracy@5   | 0.8029     |
| cosine_accuracy@10  | 0.85       |
| cosine_precision@1  | 0.62       |
| cosine_precision@3  | 0.2567     |
| cosine_precision@5  | 0.1606     |
| cosine_precision@10 | 0.085      |
| cosine_recall@1     | 0.62       |
| cosine_recall@3     | 0.77       |
| cosine_recall@5     | 0.8029     |
| cosine_recall@10    | 0.85       |
| cosine_ndcg@10      | 0.7378     |
| cosine_mrr@10       | 0.7016     |
| **cosine_map@100**  | **0.7074** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 2 tokens</li><li>mean: 46.27 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.87 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anchor                                                                                                                                       |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>We utilize a full yield curve approach in the estimation of service and interest costs by applying the specific spot rates along the yield curve used in the determination of the benefit obligation to the relevant projected cash flows. This approach provides a more precise measurement of service and interest costs by improving the correlation between the projected cash flows to the corresponding spot rates along the yield curve. This approach does not affect the measurement of our pension and other post-retirement benefit liabilities but generally results in lower benefit expense in periods when the yield curve is upward sloping.</code> | <code>How does the use of a full yield curve approach in estimating pension costs affect the measurement of liabilities and expenses?</code> |
  | <code>Ending | 8,134 | | 8,206 | | 16,340 | | 8,061 | | 8,016 | 16,077</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <code>What was the ending store count for the Family Dollar segment after the fiscal year ended January 28, 2023?</code>                     |
  | <code>The company's capital expenditures for 2024 are expected to be approximately $5.7 billion.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>How much does the company expect to spend on capital expenditures in 2024?</code>                                                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5661        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7151                 | 0.7378                 | 0.7443                 | 0.6680                | 0.7546                 |
| 1.6244     | 20     | 0.6602        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7326                 | 0.7533                 | 0.7564                 | 0.7037                | 0.7640                 |
| 2.4365     | 30     | 0.4675        | -                      | -                      | -                      | -                     | -                      |
| 2.9239     | 36     | -             | 0.7384                 | 0.7575                 | 0.7601                 | 0.7086                | 0.7643                 |
| 3.2487     | 40     | 0.3891        | -                      | -                      | -                      | -                     | -                      |
| **3.8985** | **48** | **-**         | **0.7379**             | **0.758**              | **0.7601**             | **0.7074**            | **0.7649**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->